目录

电子科技大学修订全日制学术型研究生培养方案的要求 .. 1
全日制研究生课程编号、课程分级及研究生获取课程学分计算说明 4
马克思主义基本原理学科 博士研究生培养方案 .. 11
思想政治教育学科 博士研究生培养方案 ... 15
数学学科 博士研究生培养方案 .. 20
理论物理学科 博士研究生培养方案 ... 24
等离子体物理学科 博士研究生培养方案 .. 28
凝聚态物理学科 博士研究生培养方案 ... 32
光学学科 博士研究生培养方案 ... 37
无线电物理学科 博士研究生培养方案 ... 41
机械工程学科 博士研究生培养方案 ... 45
光学工程学科 博士研究生培养方案 ... 49
仪器科学与技术学科 博士研究生培养方案 .. 53
材料科学与工程学科 博士研究生培养方案 .. 57
物理电子学学科 博士研究生培养方案 ... 61
电路与系统学科 博士研究生培养方案 ... 65
微电子学与固体电子学学科 博士研究生培养方案 .. 69
电磁场与微波技术学科 博士研究生培养方案 ... 73
电子信息材料与元器件学科 博士研究生培养方案 .. 77
信息与通信工程学科 博士研究生培养方案 .. 81
通信与信息系统学科 博士研究生培养方案 .. 86
信号与信息处理学科 博士研究生培养方案 .. 91
信息获取与探测技术学科 博士研究生培养方案 .. 95
信息安全学科 博士研究生培养方案 ... 99
控制科学与工程学科 博士研究生培养方案 .. 103
导航、制导与控制学科 博士研究生培养方案 .. 107
计算机科学与技术学科 博士研究生培养方案 ... 111
生物医学工程学科 博士研究生培养方案 ... 116
生物医学工程学科 博士研究生培养方案 ... 120
软件工程学科 博士研究生培养方案 ... 124
管理科学与工程学科 博士研究生培养方案 .. 128
目 录

信息管理与电子商务学科 博士研究生培养方案 .. 128
金融工程学科 博士研究生培养方案 .. 133
工商管理学科 博士研究生培养方案 .. 137
马克思主义基本原理学科 博士研究生（直博生）培养方案 142
思想政治教育学科 博士研究生（直博生）培养方案 ... 146
凝聚态物理学科 博士研究生（直博生）培养方案 .. 151
光学学科 博士研究生（直博生）培养方案 .. 156
无线电物理学科 博士研究生（直博生）培养方案 .. 160
光学工程学科 博士研究生（直博生）培养方案 .. 165
仪器科学与技术学科 博士研究生（直博生）培养方案 170
材料科学与工程学科 博士研究生（直博生）培养方案 174
物理电子学学科 博士研究生（直博生）培养方案 .. 179
电路与系统学科 博士研究生（直博生）培养方案 .. 184
微电子学与固体电子学学科 博士研究生（直博生）培养方案 189
电磁场与微波技术学科 博士研究生（直博生）培养方案 193
电子信息材料与元器件学科 博士研究生（直博生）培养方案 198
信息与通信工程学科 博士研究生（直博生）培养方案 202
通信与信息系统学科 博士研究生（直博生）培养方案 207
信号与信息处理学科 博士研究生（直博生）培养方案 212
控制科学与工程学科 博士研究生（直博生）培养方案 217
软件工程学科 博士研究生（直博生）培养方案 .. 222

备注：共 50 个博士研究生培养方案，其中直博生培养方案 18 个。计算机学院按 3 个二级学科招生，但按一级学科制订培养方案。
电子科技大学修订全日制学术型研究生培养方案的要求

（2009年修订）

修订电子科技大学研究生培养方案是以《国家教育委员会关于修订研究生培养方案的指导意见》[教改办（1998）1号]和《关于加强和改进研究生培养工作的几点意见》[教改办（2000）1号]等文件规定为依据，以致力于培养高层次创新人才为修订目标，结合当前我校试行的研究生培养机制改革精神要求，特制定本修订要求。

一、指导思想

研究生培养方案应当培养目标清晰、定位准确、特色鲜明，切实可行。在修订培养方案过程中，将指导性、规范性与灵活性、可操作性有机统一起来。充分尊重相关学科的优势和发展特点，优化各学科的核心专业基础课和专业课；提倡研究型教学改革；跨学科研究生补修课程的选择要高度体现专业理论基础性。

二、基本原则

1. 学科专业划分及名称以1997年国务院学位办颁布的《授予博士、硕士学位和培养研究生的学科专业目录》（以下简称《专业目录》）为准。要求正确把握《专业目录》的内涵，本着优化学科结构、突出学科特色、培养高素质人才的原则，开展研究生培养方案的修订工作。

2. 以《中华人民共和国学位条例》及其实施细则等国家文件规定为依据，反映国家对研究生培养质量的基本要求，体现本校办学优势和特色。遵循研究生教育规律，突出各学科的知识更新和发展趋势，以社会需求为导向，与科学技术发展相适应，满足国家经济建设和社会发展对各级各类高层次专门人才的需要。总结本学科研究生培养工作经验，大胆吸收、借鉴国内外先进的研究生培养经验和管理模式，进一步优化和规范研究生培养过程。

3. 注重因材施教，发挥研究生的个人才能和特长，为研究生制订个人培养计划留有发展的空间，突出研究生创新能力和综合素质的培养。

4. 一级学科与二级学科的培养方案原则上应按照《专业目录》的二级学科制订；不设二级学科的一级学科，按照一级学科制订；设二级学科但已获该一级学科博士学位授予权的，可以按二级学科制订，也可以在一级学科范围内统筹考虑，结合实际情况制订。

5. 同时具有博士、硕士学位授予权的学科专业，要处理好二者之间的关系，不仅要体现博士、硕士层次上的内容区别，而且要注意两者间的联系。

6. 研究生培养方案包括的主要内容有：培养目标、研究方向、学习年限、课程设置、考核方式、学位论文工作、培养方式与方法以及其它内容（教学实践、科研实践、学术活动等）。培养方案应具有指导性与可操作性，便于考核、检查。

三、基本要求

1. 各学科修订研究生培养方案采用传统的责任学院负责制，研究生（硕/博）培养方案修订工作由责任学院的院长领导，由分管研究生培养工作的院长具体组织落实。各学科应成立由本学科及研究生教学骨干教师组成的培养方案修订工作小组（原则上不少于9人），开展培养方案修订工作。修订内容由工作小组集体讨论决定。
对于某学科有跨学院跨导师招收研究生的情况，责任学院应邀请其它学科的相关导师，共同商讨论定研究生培养方案。

2. 各学科培养方案应充分反映该学科的发展趋势和特色。要求提交研究生培养方案时，一并附上国内外名校相同（相关）学科的研究生培养方案或课程设置计划，并与其进行比较，给出说明本校学科培养方案与所比较的外校相同（相关）学科设置的差别和特点的比较报告。

3. 培养方案中的课程设置要充分论证，能反映出该学科研究生培养基本要求和学科专业优势与特点。

重点梳理专业基础课和专业课的课程体系。其中，专业基础课的设置应侧重于使研究生掌握扎实的专业理论基础知识；专业课侧重于体现本学科专业知识的更新和前沿性，注意整合或更新、淘汰内容陈旧、学生反映效果差的课程，力求内容新颖、充实。

基础课与专业基础课应加宽加厚基础理论课程，适应学科发展需要。各学科专业基础课一般仍按照二级学科要求进行设置（只有一级学科的则按照一级学科要求设置）。

提高专业选修课质量，促进研究生个性化发展，为研究生创造良好的创新环境。提倡各学科专业课打通我校同一个一级学科包含的所有二级学科，融合贯通设置专业课，即由在相同一级学科内包含的所有二级学科分别提供几门专业课，给出类似“菜单式”的列表清单，使该一级学科下的所有二级学科研究生可在相同一级学科内跨二级学科选修专业课，以拓宽其专业知识面。而“菜单式”专业课程设置允许开设多门专业课，但每门专业课一般不超过 20 学时，且课程之间没有重叠内容。可根据教学周次分时分阶段开出。此类专业课程因学时偏少，研究生将不再有试听时间（两周），即直接网上选课确定名单。对于非“菜单式”列表中的选修课，则按照传统的听课程序选课。

鼓励结合学科要求增设科技方法研究课程，为搞好科技开发奠定基础。提倡开设培养研究生“独立研究”、“独立设计”、“工程训练”、“技术创新”、“研究方法应用”、“科研创造”等科学技术应用方法课程。

鼓励开设一门具有国际化水准的高水平专业选修课，以提升研究生的大局观念、国际意识和国际竞争力。

4. 将课程编号扩大到 8 位数。每位的具体含义为：

```
学院 课程所属学科 课程级别号 课程顺序号
```

例如，某在课程编号“01025003”表示：该课程为开课的通信学院（01）的“通信与信息系统”学科（02）中的、课程级别号为 5 的某门课程，是该级别下的第 3 门课程（003）。

5. 更新全校基础课内容。请各学科对本学科的数学（含物理类）基础课内容提出基本要求，研究生院负责协调落实并将能开设出的基础课提供给学院选择。

6. 争取开设高水平的、能反映学科前沿的博士生课程。

7. 培养方案中的研究方向要求与研究生招生简章中的研究方向保持一致。

8. 要有保证培养方案修订质量的具体措施。

（1）课程名称要规范，能真实反映该课程所覆盖的内容。

（2）课程内容和水平要体现层次差别。即硕士生、博士生课的层次要区分开，硕士生、本科生课要区分开。
（3）避免同一学科开设的不同课程之间内容重叠。
（4）杜绝因人设课现象。①对于应列入培养方案、但评教效果较差（综合研究生评教、专家评价意见等）或课程内涵分量不够的课程，该学科应给出明确的解决办法，要考虑到该课程内容整合，或更新内容，或提高教师水平，甚至可撤换不合格任课教师；②对于暂时无人能开出的、但体现了学科培养基本要求的课程，也应纳入培养方案中，以完整地体现该学科研究生培养特点和水平。
（5）在专业课程中加强研究型课程建设，重视课程作业、实验等环节训练。
（6）确定为研究生培养方案中的课程，在提交初稿时要提供课程简介，定稿时要提供课程教学大纲（含教材或参考资料的说明），相近学科设置的同名课程教学大纲基本内容应统一（研究生院组织相关学院进行协调）。课程教学大纲中规定使用教材的购买、印刷等必须落实。
（7）严格审核硕博共选课程。对该类课程，应在教学大纲中体现对硕士生、博士生的不同要求。
（8）各学院在充分论证所属学科培养特点和基本要求的基础上，可适当减少该学科研究生授予学位应达到的课程学分要求，但对课程内容和质量必须提出更高要求，以保证培养质量。
（9）研究生课程设置要兼顾受益面。对受益面过小的课程（即选课人数较少），如果非该学科必须开设的课程，应考虑该课程是否与其他课程整合或暂不设置。
（10）关于教材及参考材料：学位课程要求有确定的教材，专业选修课及其他选修课可有确定的教材或若干本主要参考书目。课程一般应提供参考文献，作为学生自学参考资料。
（11）各学科应合理安排各类课程的开课学期，避免“秋紧春松”或“秋松春紧”的现象。

四、其他要求及说明

1. 全日制学术型研究生培养方案的要求

（1）严格审核硕博共选课程。对该类课程，应在教学大纲中体现对硕士生、博士生的不同要求。
（2）各学院在充分论证所属学科培养特点和基本要求的基础上，可适当减少该学科研究生授予学位应达到的课程学分要求，但对课程内容和质量必须提出更高要求，以保证培养质量。
（3）研究生课程设置要兼顾受益面。对受益面过小的课程（即选课人数较少），如果非该学科必须开设的课程，应考虑该课程是否与其他课程整合或暂不设置。
（4）关于教材及参考材料：学位课程要求有确定的教材，专业选修课及其他选修课可有确定的教材或若干本主要参考书目。课程一般应提供参考文献，作为学生自学参考资料。
（5）各学科应合理安排各类课程的开课学期，避免“秋紧春松”或“秋松春紧”的现象。
全日制研究生课程编号、课程分级及研究生获取课程学分计算说明

一、课程编号方法

研究生课程编号共八位数，其具体含义分别为:

\[
\begin{array}{cccc}
\times & \times & \times & \times \\
1 & 2 & 3 & 4 \\
学院 & 课程所 & 课程 & 该级号下 \\
代码 & 属学科 & 级号 & 课程顺序号 \\
或领域
\end{array}
\]

例如:
某课程编号“01025003”表示：开课单位为通信学院（01）、在该学院的“通信与信息系统”学科（02）中的课程级别号为5，是该级别下的第3门课程（003）。
某课程编号“07425001”表示：该课程为开课单位为自动化学院（07）、在该学院的“仪器仪表工程”硕士专业领域（42）中的课程级别号为5，是该级别下的第1门课程（001）（主要面向“实践教学环节”开设）。

二、课程编号各位数具体内容

①——第一、二位，代表开课学院代码;
特别地，“20”代表全校统一编号的基础课/专业基础课/专业课；“00”代表校素质教育课程。

②——第三、四位，代表各学院包含的学科或专业领域对应序号;
特别地，若为面向全日制硕士专业学位所开设的专门课程，则对应专业领域代表的两位数，首位统一为“4”，次位是该领域的编号。

开课学院对应代码和学院包含的学科对应序号详见下表：

<table>
<thead>
<tr>
<th>学院代码</th>
<th>学院名称</th>
<th>学科、专业领域名称及课程编号中对应的序号</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>通信与信息工程学院</td>
<td>01－信息与通信工程（一级学科）（博士）；02－通信与信息系统；03－密码学；04－光学工程；41－电子与通信工程；88－该学院其他学科</td>
</tr>
<tr>
<td>002</td>
<td>电子工程学院</td>
<td>01－信息与通信工程（一级学科）（博士）；02－电子科学与技术（一级学科）；03－电磁场与微波技术；04－信号与信息处理；05－电路与系统；06－信息获取与探测技术；41－电子与通信工程；88－该学院其他学科</td>
</tr>
<tr>
<td>003</td>
<td>微电子与固体电子学院</td>
<td>01－电子科学与技术（一级学科）；02－材料科学与工程（一级学科）；03－微电子学与固体电子学；04－电子信息材料与元器件；05－化学工程与技术（一级学科）；41－电子与通信工程；42－材料工程；43－集成电路工程；88－该学院其他学科</td>
</tr>
</tbody>
</table>

· 4 ·
<table>
<thead>
<tr>
<th>学院代码</th>
<th>学院名称</th>
<th>学科、专业领域名称及课程编号中对应的序号</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>物理电子学院</td>
<td>01－电子科学与技术（一级学科）；02－物理电子学；03－无线电物理；04－光学；05－等离子体物理；06－凝聚态物理；07－理论物理；41－电子与通信工程；88－该学院其他学科</td>
</tr>
<tr>
<td>005</td>
<td>光电信息学院</td>
<td>01－光学工程（一级学科）；02－材料科学与工程（一级学科）；03－物理电子学；04－电路与系统；05－化学工程与技术（一级学科）；06－电磁场与微波技术；07－电子信息材料与元器件；08－信号与信息处理；41－光学工程；42－电子与通信工程；88－该学院其他学科</td>
</tr>
<tr>
<td>006</td>
<td>计算机科学与工程学院</td>
<td>01－计算机科学与技术(一级学科)；02－计算机系统结构；03－计算机软件与理论；04－计算机应用技术；06－信息安全；41－计算机技术；88－该学院其他学科</td>
</tr>
<tr>
<td>007</td>
<td>自动化工程学院</td>
<td>01－仪器科学与技术；02－控制理论与控制工程；03－检测技术与自动化装置；04－模式识别与智能系统；05－地球系统科学与地理信息工程；06－生物医学工程；07－计算机应用技术；41－控制工程；42－仪器仪表工程；88－该学院其他学科</td>
</tr>
<tr>
<td>008</td>
<td>机械电子工程学院</td>
<td>01－机械制造及其自动化；02－机械电子工程；03－机械设计及理论；04－精密仪器及机械；05－电力电子与电力传动；06－机械工程（一级学科）；41－机械工程；88－该学院其他学科</td>
</tr>
<tr>
<td>009</td>
<td>生命科学与技术学院</td>
<td>01－生物医学工程（一级学科）；02－生物物理；03－生物化学与分子生物学；04－应用心理学；05－神经生物学；41－生物医学工程；88－该学院其他学科</td>
</tr>
<tr>
<td>010</td>
<td>数学科学学院</td>
<td>01－数学（一级学科）；02－应用数学；03－计算数学；04－运筹学与控制论；05－基础数学；06－概率论与数理统计；07－统计学；88－该学院其他学科</td>
</tr>
<tr>
<td>011</td>
<td>经济与管理学院</td>
<td>01－数量经济学；02－管理科学与工程；03－企业管理；04－新兴技术管理；05－技术经济及管理；06－金融学；07－金融工程；08－区域经济学；41－工业工程；42－项目管理；43－物流工程；44－工程管理硕士；45－工商管理硕士；88－该学院其他学科</td>
</tr>
<tr>
<td>学院代码</td>
<td>学院名称</td>
<td>学科、专业领域名称及课程编号中对应的序号</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>012</td>
<td>政治与公共管理学院</td>
<td>01—国际政治；02—行政管理；03—新闻传播学；04—宪法学与行政法学；05—应用心理学；41—新闻与传播硕士；42—公共管理硕士；88—该学院其他学科</td>
</tr>
<tr>
<td>013</td>
<td>外国语学院</td>
<td>01—外国语言学与应用语言学；02—英语语言文学；41—翻译；88—该学院其他学科</td>
</tr>
<tr>
<td>016</td>
<td>马克思主义学院</td>
<td>01—马克思主义基本原理、思想政治教育；02—思想政治教育；03—政治学；88—该学院其他学科</td>
</tr>
<tr>
<td>017</td>
<td>能源科学与工程学院</td>
<td>01—电气工程；02—材料科学与工程；03—模式识别与智能系统；88—该学院其他学科</td>
</tr>
<tr>
<td>018</td>
<td>资源与环境学院</td>
<td>01—测绘科学与技术（一级学科）；41—控制工程；88—该学院其他学科</td>
</tr>
<tr>
<td>019</td>
<td>航空航天学院</td>
<td>01—导航、制导与控制；02—系统工程；41—电子与通信工程；88—该学院其他学科</td>
</tr>
<tr>
<td>021</td>
<td>医学院</td>
<td>01—生物医学工程；88—该学院其他学科</td>
</tr>
<tr>
<td>022</td>
<td>信息与软件工程学院</td>
<td>01—软件工程；41—软件工程；88—该学院其他学科</td>
</tr>
<tr>
<td>024</td>
<td>电子科学研究院</td>
<td>01—材料科学与工程（一级学科）；02—通信与信息系统；03—电磁场与微波技术；04—信号与信息处理；05—电路与系统；06—微电子与固体电子学；07—电子信息材料与元器件；08—计算机应用技术；09—信息安全；41—电子与通信工程；42—计算机技术；88—该学院其他学科</td>
</tr>
<tr>
<td>026</td>
<td>通信抗干扰技术国家级重点实验室</td>
<td>01—信息与通信工程(一级学科)(博士)；02—通信与信息系统；03—密码学；41—电子与通信工程；88—该学院其他学科</td>
</tr>
</tbody>
</table>

注：上表各序号代表该学院主要招生的学科，其他招生很少的学科归入到序号“88”中；某门课程如适合多学科，则按小序号优先编排。

③——第五位，代表课程分级。
④——第六、七、八位，代表该级号下课程顺序号。
三、课程分级规定

研究生课程共分五级，分别用 400、500、600、700、800 级表示。各级别符号的含义如下：

400 级——交叉学科初级基础理论课程。主要为非本学科背景的研究生开设的、本学科主要理论或技术基础课，课程难度相当于本学科已开设的本科高级课程。（主要为跨学科考生补修本科核心课程）

500 级——本学科基本理论、技术基础类课程。主要为本学科硕士研究生层次的专业理论或技术基础课程，本学科公共的研究生层次的综合实验技术类、素质教育类课程。

600 级——包括两部分：
本学科硕士研究生技术专业类课程。主要为本学科硕士研究生层次的专业性较强的课程，或内容难度较大、比较深入或涉及前沿的课程，包括课程作业、课程设计、实验设计等内容。
本学科博士研究生基本理论、技术基础类课程。

700 级——学科前沿新理论与新方法理论课程。主要为博士生的专业技术课程，或针对硕士研究生开设的本学科前沿高新技术的理论基础或专业基础类课程。

800 级——高级讲座与研讨课程。主要为本学科博士生、硕士生开设的前沿讲座类、研讨类和报告类等高层次课程。

四、研究生获取学分计算

研究生修读不同级别的课程，根据各级别的学分要求计算实际学分。具体规定如下：

硕士生学习 **400** 级课程不计学分，学习 **500** 级以上（含 **500** 级）课程按课程学分计算。

博士研究生选修 **500** 级以上（含 **500** 级）的课程，按课程学分计算；专业课允许选修 **600** 级的课程，但 **700** 级的课程不少于 8 个学分。

博士生选修 **400** 级、**500** 级课程不计学分，学习 **600** 级以上（含 **600** 级）课程按课程学分计算，但博士生的专业选修课限选 **700**、**800** 级课程，不能用 **500**、**600** 级课程学分取代。
电子科技大学博、硕士授权点一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>学科门类</th>
<th>一级学科名称</th>
<th>学科代码</th>
<th>二级学科名称</th>
<th>学科代码</th>
<th>国家重点</th>
<th>省重点</th>
<th>博士点</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>经济学</td>
<td>应用经济学◎</td>
<td>0202</td>
<td>区域经济学</td>
<td>020202</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>法学</td>
<td>政治学◎</td>
<td>0302</td>
<td>国际政治</td>
<td>030206</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>马克思主义理论◎*</td>
<td>0305</td>
<td>马克思主义基本原理</td>
<td>030501</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>教育学</td>
<td>心理学</td>
<td>0402</td>
<td>应用心理学</td>
<td>040203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>文学</td>
<td>外国语言文学◎</td>
<td>0502</td>
<td>外国语言学及应用语言学</td>
<td>050211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>数学</td>
<td>数学●◆*</td>
<td>0701</td>
<td>基础数学</td>
<td>070101</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>物理学●◆*</td>
<td>粒子物理与原子核物理</td>
<td>070202</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>理学</td>
<td>生物学◎</td>
<td>0710</td>
<td>神经生物学</td>
<td>071006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>机械工程●◆*</td>
<td>0802</td>
<td>机械制造及其自动化</td>
<td>080201</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>工学</td>
<td>光学工程●◆**</td>
<td>0803</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>序号</td>
<td>学科门类</td>
<td>一级学科名称</td>
<td>学科代码</td>
<td>二级学科名称</td>
<td>学科代码</td>
<td>国家重点</td>
<td>省重点</td>
<td>博士点</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>34</td>
<td>仪器科学与技术</td>
<td>精密仪器及机械</td>
<td>0804</td>
<td>080401</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>测试计量技术及仪器</td>
<td>080402</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>材料科学与工程</td>
<td>材料物理与化学</td>
<td>0805</td>
<td>080501</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>材料学</td>
<td>080502</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>材料加工工程</td>
<td>080503</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>电气工程</td>
<td>电力电子与电力传动</td>
<td>0808</td>
<td>080804</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>电子科学与技术</td>
<td>物理电子学</td>
<td>0809</td>
<td>080901</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>电路与系统</td>
<td>080902</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>微电子学与固体电子学</td>
<td>080903</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>电磁场与微波技术</td>
<td>080904</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>电子信息系统与材料工程</td>
<td>0809Z1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>信息与通信工程</td>
<td>通信与信息系统</td>
<td>0810</td>
<td>081001</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>信号与信息处理</td>
<td>081002</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>信息获取与探测技术</td>
<td>0810Z1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>控制科学与工程</td>
<td>控制理论与控制工程</td>
<td>0811</td>
<td>081101</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>检测技术与自动化装置</td>
<td>081102</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>系统工程</td>
<td>081103</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>模式识别与智能系统</td>
<td>081104</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>导航、制导与控制</td>
<td>081105</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>计算机科学与技术</td>
<td>计算机系统结构</td>
<td>0812</td>
<td>081201</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>计算机软件与理论</td>
<td>081202</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>计算机应用技术</td>
<td>081203</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>信息安全</td>
<td>0812Z1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>地理科学与技术</td>
<td>地图制图学与地理信息工程</td>
<td>0816</td>
<td>081603</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>化学工程与技术</td>
<td>应用化学</td>
<td>0817</td>
<td>081704</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>化学工程</td>
<td>0831</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>软件工程</td>
<td>0835</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>军事学</td>
<td>军队指挥学</td>
<td>1105</td>
<td>110505</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>管理科学与工程</td>
<td>金融工程</td>
<td>1201</td>
<td>1201Z1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>会计学</td>
<td>1202</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>企业管理</td>
<td>120202</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>旅游管理</td>
<td>120203</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>技术经济及管理</td>
<td>120204</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>政府管理</td>
<td>120401</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>社会学</td>
<td>社会学</td>
<td>1204</td>
<td>120402</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
电子科技大学全日制专业学位硕士学科一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>学位类别</th>
<th>领域</th>
<th>专业代码</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>翻译硕士</td>
<td></td>
<td>055100</td>
</tr>
<tr>
<td>2</td>
<td>新闻与传播硕士</td>
<td></td>
<td>055200</td>
</tr>
<tr>
<td>3</td>
<td>工程硕士</td>
<td>机械工程</td>
<td>085201</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>光学工程</td>
<td>085202</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>仪器仪表工程</td>
<td>085203</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>材料工程</td>
<td>085204</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>电子与通信工程</td>
<td>085208</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>集成电路工程</td>
<td>085209</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>控制工程</td>
<td>085210</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>计算机技术</td>
<td>085211</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>软件工程</td>
<td>085212</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>生物医学工程</td>
<td>085230</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>工业工程</td>
<td>085236</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>项目管理</td>
<td>085239</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>物流工程</td>
<td>085240</td>
</tr>
<tr>
<td>16</td>
<td>工商管理硕士（MBA）</td>
<td></td>
<td>125100</td>
</tr>
<tr>
<td>17</td>
<td>公共管理硕士（MPA）</td>
<td></td>
<td>125200</td>
</tr>
<tr>
<td>18</td>
<td>工程管理硕士</td>
<td></td>
<td>125600</td>
</tr>
</tbody>
</table>
马克思主义基本原理学科 博士研究生培养方案

（专业代码：030501）

马克思主义基本原理，是马克思主义科学体系的基本理论、基本范畴，是其立场、观点和方法的理论表达。马克思主义基本原理学科，旨在研究马克思主义主要经典著作和基本原理，从整体上研究和把握马克思主义科学体系，并运用马克思主义立场、观点和方法来分析和研究现实问题、认识世界和社会主义发展中的问题。马克思主义基本原理的研究和教育，对马克思主义进行深入系统的研究，对党员干部和青年学生进行马克思主义理论教育具有重要意义。承担该学科博士生培养任务的马克思主义教育学院在马克思主义理论方面有很强的研究与教学实力，1997年曾获国家级教学成果一等奖，2005年获国家教学成果二等奖。

一、培养目标

本学科博士学位培养具有坚定的马克思主义信仰和社会主义信念，有深厚的马克思主义理论功底和专业基础知识，能够较好地运用马克思主义立场、观点和方法研究和分析现实社会问题，具有较强的研究能力和一定的创新能力的高层次专业人才。

二、研究方向

1. 马克思主义与当代经济社会发展研究
2. 马克思主义理论教育规律和方法研究
3. 马克思主义经典著作和基本原理研究
4. 马克思主义与当代社会思潮研究

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间，工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

马克思主义基本原理学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>公共基础课</td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>公共基础课</td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>基础课</td>
<td>16017004</td>
<td>马克思主义经典著作研究</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>专业基础课</td>
<td>16017002</td>
<td>中国化马克思主义专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>专业基础课</td>
<td>16027003</td>
<td>现代思想政治教育学专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>非学位选修课</td>
<td>16017008</td>
<td>马克思主义发展史专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td>其他选修课</td>
<td>16887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>13006001~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>选修课</td>
<td>00006005</td>
<td>博士生综合素质</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:

1. 马克思、恩格斯全集 1-4 卷
2. 列宁全集 1-4 卷
3. 马克思《资本论》
4. 马克思、恩格斯《共产党宣言》
5. 恩格斯《反杜林论》
6. 列宁《唯物主义和经验批判主义》
7. 列宁《国家与革命》
8. 毛泽东《毛泽东选集》
9. 邓小平《邓小平文选》

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容:

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题
课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。

社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
（4）各学科根据实际情况每年举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文选题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期末之前，最迟应在第四学期初之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，
应终止博士生学业（退学处理）。
(5) 若因正当原因改变选题，须按上述要求重做开题报告。
(6) 论文开题通过1年后方能申请学位论文中期考评。
2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。
3、中期考评
(1) 学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
(2) 若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
(3) 学位论文中期考评通过1年后方能申请学位论文答辩。
4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
思想政治教育学科 博士研究生培养方案

（专业代码：030505）

思想政治教育是运用马克思主义理论与方法，专门研究人们思想品德形成、发展和思想政治教育规律，培养人们正确世界观、人生观、价值观的学科。思想政治教育在我国革命和社会主义现代化建设中，发挥着“生命线”和“中心环节”的作用，积累了丰富的实践经验和社会成果，是党和社会主义国家的优良传统和制度优势。思想政治教育学科以马克思主义为理论指导，以党的思想政治工作为基础，经过20多年的学科建设，在思想政治教育的性质、规律、功能、内容、方法研究，中国共产党思想政治工作史与基本经验研究，马克思主义理论教育研究等方面取得了丰硕成果。我校思想政治教育博士点以思想政治教育定性与定量结合的研究特色为依托，以本校雄厚的电子科技实力为背景，在思想政治教育统计研究与质性研究方面居全国前列，在网络思想政治教育研究方面也极具竞争力。在新的历史条件下，本学科面临着拓展学科领域、丰富学科内涵、增强学科特色、提高学科水平的建设任务。

一、培养目标

本专业培养具有坚实理论基础和系统专业知识、德智体全面发展的高层次人才。具体要求是：

1. 具有坚定的马克思主义信仰和社会主义信念；
2. 系统掌握马克思主义基本原理和中国化马克思主义理论；
3. 全面掌握思想政治教育的理论、方法与教育对象的特点，把握人们思想品德形成、发展的规律；
4. 具有针对性思想政治教育理论与实践问题采用哲学方法、质性方法、量化方法予以高水平研究的能力；
5. 具有较强分析、解决人们思想问题与实际问题的能力；
6. 具有学科信息处理、学术交流与较强的文字、口头表达能力；
7. 掌握一门外国语并能熟练地阅读本专业的外文资料和进行本学科的学术交流；
8. 具有学科的前沿研究动态与最新成果；
9. 能胜任与本学科相关的教学、科研和党政、社团、学生教育管理工作。

二、研究方向

1. 思想政治教育的基本理论和方法论研究
2. 思想政治教育创新与发展研究
3. 新时期世界观、人生观、价值观教育研究
4. 大学生思想政治教育与管理工作研究

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课。学位课中必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导...
师指导下学习。

五、课程设置

思想政治教育学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>16017004</td>
<td>马克思主义经典著作研究</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业课</td>
<td>16017002</td>
<td>中国化马克思主义专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16027003</td>
<td>现代思想政治教育学专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>16017008</td>
<td>马克思主义发展史专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td>选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献综述报告</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：

1. 张耀灿、郑永廷《现代思想政治教育学》人民出版社，2006
2. 郑永廷、胡树祥《思想政治教育方法论》高等教育出版社，1999
3. 张耀灿等《思想政治教育前沿问题研究》人民出版社，2004
4. 张耀灿等《中国共产党思想政治工作史论》高等教育出版社，1999
5. 郑永廷等《社会主义意识形态发展史》人民出版社
6. 王玄武等《比较德育学》武汉大学出版社，2002
7. 王玄武等《思想教育、政治教育、道德教育比较研究》武汉大学出版社
8. 王玄武等《政治观教育通论》武汉大学出版社
9. 鲁洁《德育现代化实践研究》江苏教育出版社
10. 黄钊《儒家德育学说论纲》武汉大学出版社
11. 骆郁庭《精神动力论》武汉大学出版社
12. 张澍军《德育哲学引论》人民出版社
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。

 教学实践：主要是向硕士生、本科生的辅修课程工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。

 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

 (1) 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

 (2) 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

 (3) 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

 (4) 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管
理科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期末之前，最迟应在第四学期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过 1 年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。
3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。
4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5、学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
数学学科 博士研究生培养方案

（专业代码：070100）

拥有数学一级博士学位授予权，涵盖基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论5个二级学科，同时，数学一级学科为四川省重点一级学科。研究方向既强调数学基础，又强调科学计算的理论和方法、数学及其应用等，其理论和方法在数学物理、电子科学与技术、信息科学、计算机科学、管理科学、自动控制等领域有重要的应用。

一、培养目标

本专业培养勇于追求真理和献身于科学研究的高层次数学专业人才。博士学位获得者应政治合格，科学态度和工作作风严谨，熟练掌握一门外语并能阅读和撰写外文专业论文，具有深厚坚实的专业理论基础，了解本学科国际学术前沿的发展动态，具备独立从事本学科基础理论及应用前沿问题的研究能力，并在科学研究上能做出创造性的成果，胜任在高等院校、科研机构和其他单位的教学、科研等工作。

二、研究方向

1. 数值代数与高性能科学计算及应用
2. 图像处理数学模型与高性能数值算法
3. 矩阵分析与组合矩阵分析
4. 动力系统理论及应用
5. 概率论及其应用
6. 边界元方法与工程计算
7. 不确定性的数学理论及其应用
8. 拓扑与混沌及其应用
9. 偏微分方程
10. 信号传输中的框架理论与小波分析
11. 流体力学和保险精算
12. 模糊系统与模式识别

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校选专业基础课。允许相关学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备 注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10026016</td>
<td>非线性分析</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>10017004</td>
<td>拓扑与混沌基础</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10027001</td>
<td>数值代数</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>10017005</td>
<td>信号传输中的框架理论及小波分析</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10027003</td>
<td>积分与边界积分方程数值解</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10017003</td>
<td>泛函微分方程及定性理论</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10027005</td>
<td>不确定性的数学理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10027007</td>
<td>随机分析</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10017001</td>
<td>应用偏微分方程</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10880001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
2. 傅希林，闫宝强,刘衍胜,脉冲微分方程系统引论,科学出版社, 2005.
电子科技大学博士研究生培养方案

六、必修环节

博士研究生必修环节包含四大部分, 要求研究生分别完成以下内容:

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题
 课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报
 所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报
 所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，不得参加论文答辩；作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管
 理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相
 应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位
论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研
究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导
下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学
期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行）。考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
理论物理学科 博士研究生培养方案

（专业代码：070201）

理论物理学科是物理学中最为基础的学科，它主要研究物理学中的基本规律和物质的基本组份。它为整个物理学领域和其它科学领域提供最为根本的研究基础，也是人类理解自然的根本途径。

本学科的主要研究方向有弦理论，量子场论与粒子物理，广义相对论与宇宙学，量子信息。

一、培养目标

培养系统掌握理论物理专业的基本理论和研究方法，具有坚实的理论物理基础和很强的数学功底，了解本学科国际上的前沿动向，具备独立进行本专业相关前沿课题研究工作的能力，在科学上做出创造性的成果，能够主讲高等学校理论物理基础课与专业课，或担负专门技术工作的高层次人才。

二、研究方向

1. 超弦理论
2. 引力与宇宙学
3. 基本粒子物理
4. 量子信息

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td>公共基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066004</td>
<td>广义相对论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td>全英文</td>
</tr>
<tr>
<td></td>
<td>04076001</td>
<td>量子场论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>专业基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04076002</td>
<td>量子信息物理学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04076003</td>
<td>群论和李代数</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04077001</td>
<td>超弦理论</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066002</td>
<td>相变物理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066006</td>
<td>高等固体理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017001</td>
<td>高等光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>非学位选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>专业选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04077002</td>
<td>宇宙学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>其他选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>必修环节</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. Aspect of Symmetry, Sidney Coleman
3. Lie Algebras in Particle Physic, Howard Georgi
4. Supersymmetry and String Theory: Beyond the Standard Model, Michael Dine
电子科技大学博士研究生培养方案

六、必修环节
博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作。在导师指导下可承担部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业等单位进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案。完成者获得 1 学分。
3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文
（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究...
研究或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。
（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期前，最迟应在第四学期前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行，开题报告会至少须由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告未通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过 1 年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周向导师汇报研究进展。
3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评未通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。
4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
等离子体物理学科 博士研究生培养方案

（专业代码：070204）

等离子体物理学科主要研究低温等离子体理论与应用、计算等离子体物理、等离子体电子学以及聚变等离子体。微波等离子体理论和应用，重点研究其产生、维持的理论和方法，微波等离子体激光、微波等离子体沉积及新材料制备等。计算等离子体物理研究等离子体重要物理过程的粒子模拟技术（PIC技术）。等离子体电子学主要研究电磁场或电磁波和电子注及等离子体的三元相互作用，探索新型高效率、高功率微波器件。聚变等离子体学主要开展对受控聚变中所涉及的基础等离子体物理学进行细致研究，重点开展波与等离子体相互作用及加热机理，探索新型等离子体诊断方法。

一、培养目标

博士学位获得者应具有坚实宽厚的等离子体物理基础理论和系统的专业知识，掌握现代等微波离子体实验技能和基本的等离子体诊断技术，掌握相关的实验技术和计算机技术。具有从事科学研究工作及独立从事专门技术工作的能力。具有严谨求实的科学态度和工作作风，能够适应我国经济、科技、教育发展的需要，从事等离子体物理及其应用方面的科学研究的高层次人才，并能够作出具有创造性的科研成果。

二、研究方向

1. 低温等离子体理论与应用
2. 计算等离子体物理
3. 等离子体电子学
4. 聚变等离子体物理

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课：必修环节不低于 2 学分。专业基础课中有“*”标志的为全校共选专业基础课。允许同学科门类之间、工科与理科之间跨学科选修 1~2 门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程 2 学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听力</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04027001</td>
<td>*非线性理论和方法</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04056002</td>
<td>*等离子体技术及应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04056003</td>
<td>相对论电动力学</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04057001</td>
<td>等离子体电子学</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017001</td>
<td>高等光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04057003</td>
<td>聚变等离子体物理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计入学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td>不计入学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 (1) 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 (2) 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 (3) 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 (4) 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
 (1) 开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业(退学处理)。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。

等离子体物理学科 博士研究生培养方案
凝聚态物理学科 博士研究生培养方案

（专业代码：070205）

凝聚态物理学是物理学中最为庞大和发展最为迅速的一个分支，它主要研究凝聚态物质的力、热、电、磁、光等物理性质，以及微观结构、运动状态及其相互关系和变化规律。它不仅为材料科学、电子学、光电子学和生命科学等学科提供理论基础和研究方法，而且成为固体电子和光电子技术、固态激光器和新型高功能材料等高新技术发展和创新的源泉。我校凝聚态物理学科具有自身的特色，并依托强大的电子科学与技术学科的支撑，具有很好的发展前景。

本学科的主要研究方向有纳米结构、相变及其辐照效应、光电材料与光谱学、计算凝聚态物理等。本学科的交叉学科有光学、材料物理与化学、微电子与固体电子学等，以上学科我校均有博士点和硕士点，其中光学为教育部重点学科。

一、培养目标

本学科博士学位获得者应掌握系统宽广的凝聚态物理学和相关学科的理论知识，具有坚实的数理基础和必要的计算机应用能力；具有较强的分析和解决问题的能力以及独立从事科研工作的能力；熟练掌握一门外语，具有较强的听说能力和必要的听说能力；对本学科的某一领域有深入的研究，并有创造性系统性的研究成果；具有严谨求实的工作作风和团队协作精神；能独立胜任高等院校和科研机构的教学、科研、管理工作或产业部门的技术和管理工作。

二、研究方向

1. 纳米材料与结构
2. 相变及辐照效应
3. 新型功能材料与光谱学
4. 计算凝聚态物理
5. 合金材料与金属物理
6. 材料结构与热物性
7. 理论物理
8. 半导体物理学

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听力</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066002</td>
<td>相变物理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066006</td>
<td>高等固体理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017001</td>
<td>高等光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>专业必修课</td>
<td>03036001</td>
<td>材料物理学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017004</td>
<td>纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修</td>
<td>04887001</td>
<td>学科前沿专题讲座（凝聚态物理）</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td>2选1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 金国钧，冯端. 凝聚态物理新论. 上海，上海科技出版社，1992
2. 冯端. 金属物理学. 第一卷 结构与缺陷. 北京，科学出版社，2000
3. 冯端. 金属物理学. 第二卷 相变. 北京，科学出版社，2000
4. 李正中. 固体理论. 北京，高教出版社，1991
5. 金家骏. 分子热力学. 科学出版社，2000
6. 张万箱，徐锡生. 实用物态方程理论导引. 科学出版社，1995
7. 熊兆贤. 材料物理导论. 科学出版社，2002
8. 冯有前. 数值分析. 清华大学出版社，2000
9. 侯云智，群论. 山东大学出版社
电子科技大学博士研究生培养方案

10. 戴道生, 铁磁学, 北京大学
11. 现代磁性材料原理与应用, (美国) R. C. O’Handley 著 （有中文译本）, 2000 年

主要期刊:

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容:

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。

 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第一个学期末之前，最迟应在第二个学期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的教授（尽量为博士生导师）,并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的教授（尽量为博士生导师组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
光学学科 博士研究生培养方案

(专业代码：070207)

光学是研究光（从微波直至\(\chi\)射线及\(\gamma\)射线）的产生、传播、探测、变换以及与物质（如等离子体、生物体）的相互作用原理、技术及应用的一门学科。光学是物理学的一个重要分支，是一门经典而又充满活力的学科。它是现代科学基础研究、尖端技术、以及新兴产业的重要原动力。相对论及量子力学的建立，激光的发明及应用，光纤通信产业的崛起等\(20\)世纪最伟大的科技成就，无不得益于光学的促进与推动。在\(21\)世纪，光学将向着更为广泛的领域发展和渗透，成为物理学以及信息、生命、材料、能源等科学与技术的主要基石之一。

一、培养目标

本学科博士学位获得者应具有坚实的数理知识，掌握本学科坚实宽广的基础理论，对所从事的研究方向及相关领域具有系统深入的专门知识，独立从事相关领域的科学研究，熟练掌握计算机技术，对本学科的某一研究方向有深入系统的研究成果并有独创性研究成果。至少熟练掌握一门外语，具有从事科学研究能力，严谨求实的科学态度和工作作风，能胜任高等院校、科研机构和产业部门有关方面的教学、研究、工程开发及管理工作。

二、研究方向

1. 量子光学
2. 光电子材料及其与强激光的相互作用
3. 激光与等离子体的相互作用
4. 太赫兹物理与技术
5. 微波光电子学
6. 空间光通信与激光雷达
7. 亚波长光学

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于\(14\)学分。学位课程要求不低于\(8\)学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课，二门以上专业必修课，必修环节不低于\(2\)学分。专业基础课中有“*”号标志的为全校共选专业基础课。允许相同学科门类之间，工科与理科之间跨学科选修\(1~2\)门外学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程\(2\)学分，应在导师指导下学习。
五、课程设置

光学学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001</td>
<td>高等量子力学</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001</td>
<td>高等量子力学</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001</td>
<td>高等量子力学</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>04045005</td>
<td>光通信与光电系统</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04045006</td>
<td>光学系统设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿专题讲座（光学）</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>04047001</td>
<td>亚波长光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04047002</td>
<td>光学系统设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04057002</td>
<td>光子模拟理论与方法</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04047001</td>
<td>亚波长光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04047002</td>
<td>光学系统设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04887001</td>
<td>学科前沿专题讲座（光学）</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>04057002</td>
<td>光子模拟理论与方法</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>04047001</td>
<td>亚波长光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>04047002</td>
<td>光学系统设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>04887001</td>
<td>学科前沿专题讲座（光学）</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>13006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
1. <<Optics>> Ajoy Ghatak 2003
2. <<Principles of Optics>> Max Born and Emil wolf
5. << Optical Electronics in Modern Communications >>, Amnon Yariv, USA, Oxford, 1997

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容:
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
光学学科 博士研究生培养方案

教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。

社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题后，大量阅读文献的基础上，一般应在入学的第三学期末之前，最迟应在第四学期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行。开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
博士研究生培养方案

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）、参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
无线电物理学科 博士研究生培养方案

（专业代码：070208）

无线电物理采用近代物理学和电子信息科学的基本理论、方法及实验手段，研究电磁场和波及其与物质相互作用的基本规律，据以开发新型的电子器件和系统，发展信息传输和处理的新理论、新方法和新技术，并在电子信息系统中推广应用。在电子信息领域，现代通信、雷达、遥感、微电子、材料、生物和医疗等高新技术的重大技术进展都离不开无线电物理的突破。无线电物理已经渗透到国民经济、社会发展和国防建设的诸多方面，成为一个对电子信息领域及其相关学科、相关产业的发展具有举足轻重作用的重要学科。

一、培养目标

博士学位获得者应具有本学科坚实的数理知识，掌握本学科坚实宽广的基础理论，对所从事的研究方向及相关领域具有系统深入的专门知识，了解无线电物理及相关学科中的研究、发展趋势，熟练掌握相关的实验技术与计算机技术，对本学科的某一方面有深入的研究并有独创性研究成果。至少熟练掌握一门外语。有独立从事科学研究的能力，严谨求实的科学态度和工作作风，能胜任高等院校、研究机构和产业部门的教学、研究、工程开发及管理工作。

二、研究方向

1. 电磁理论及其应用
2. 计算电磁学及其应用
3. 微波毫米波电路与系统
4. 超宽带电磁学及其应用
5. 天线与电波传播
6. 新型微波器件

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

无线电物理学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>04036008</td>
<td>电子工程数值分析基础</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04036009</td>
<td>电子工程优化理论与方法(一)</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037005</td>
<td>电子工程优化理论与方法(二)</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037006</td>
<td>电磁场中的随机场与随机媒质</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04037004</td>
<td>超宽带电磁学及其应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006005</td>
<td>计算电磁学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04036005</td>
<td>微波电路与系统</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037003</td>
<td>瞬态地球电磁学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>02037003</td>
<td>电磁理论中的并矢格林函数</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006019</td>
<td>导波场论</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04047001</td>
<td>亚波长光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿专题讲座（无线电物理）</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。

教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。

社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告以报告会的形式，在学院的学术交流论坛公开举行；开题报告会在须由本学科及相近学科的三位专家组成，导师可以作为其中一位专家，另两位专家可以是教授或具有博士学位的教授（尽量为博士生导师），并作研究意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没通过，在导师的指导下三个月后才能申请重新开题。若开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重新作报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周至少向导师汇报研究进展。

3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的三位专家组成，导师可以作为其中一位专家，另两位专家可以是教授或具有博士学位的教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没通过者，在导师的指导下三个月后才能申请重新进行中期考评。若考不通过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统性的、完整的学术论文。多人合作的课题应明确区分本人所作的工作，共同部分应加以说明。学位论文应按《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委托研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
机械工程学科 博士研究生培养方案

（专业代码：080200）

在信息化时代,与电子信息技术、控制理论等多学科交叉融合的机械工程学科，是国民经济发
展和国防建设的基础性、战略性支柱学科。机械工业始终是国防工业的基石。工业、农业、能源、
交通、信息、水利、城乡建设、现代服务业、国防等的发展,都有赖于机械工业为其提供装备。机
械工业是一个国家装备水平及国防综合实力的体现。因此,实现由制造大国向制造强国的历史性转
变,机械工业必须要先行,必须从模仿走向自主创新、从跟踪走向高端引领,必须科学前瞻、登高
望远。

人才是实现制造强国之本,教育是育才成才之源。在通向强国的各种技术路径上,既需要从事
机械工程基础前沿研究的科学家,也需要从事技术创新的高级工程师和管理者。机械工程是以系统
工程的观点,对光机电信一体系统的相关理论、方法和技术为研究内容的一门综合学科,着重培养
具有扎实的机械科学与工程基础知识,又掌握基于计算机信息处理和自动控制理论的光机电信集成
技术,能从事现代机械科学中光机电信系统研究、开发创新、科学管理和高校教学工作的高层次人
才。

本学科建立于1964年,是省级一级重点学科,设有机械工程一级学科博士后流动站。在可靠
性设计、智能优化设计、装备控制理论及技术、机器人技术等方面成果丰富,获得省部级奖多项,作
为发起方创办了QCR2MSE可靠性工程系列国际会议,与国内外高校有着广泛的学术合作与联系。

一、培养目标

本学科博士应具有坚实的数学、物理基础知识,掌握机械工程和电子信息领域的相关理论基础,
能够以系统工程科学观点研究机械、机电融合及多物理效应一体化作用系统的相关理论、方法和技
术,把握本学科领域的前沿发展动态,具有独立从事科学研究的能力,并在本学科领域的某一方面
理论或实践上取得创造性研究成果。至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有
一定的写作能力和进行国际学术交流的能力。能胜任科学研究、工程技术开发或科技管理、高等院
校教学等工作。

二、研究方向

1. 可靠性设计
2. 智能优化设计
3. 故障诊断与健康管理
4. 数字化设计、仿真与制造
5. 智能机电系统及光机电一体化技术
6. 虚拟样机技术
7. 智能传感器与微机电系统
8. 复杂机电系统建模与控制
9. 计算机集成制造与网络化制造
10. 现代设计理论与设计自动化方法
11. 机电系统精密测控技术
12. 新型MEMS器件
13. 并联机器人理论及其控制
14. 新型MEMS器件

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者,可申请适当缩短学习年限;若因客观原
因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过六年。
四、学分与课程学习基本要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于 2 学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修 1~2 门学位课作为本学科的学位课。

学位课可代替非学位课，但非学位课不能代替学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

机械工程学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>公共基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学位</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听力</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08017001</td>
<td>机电系统智能控制</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08017002</td>
<td>机电一体化传感器及驱动器</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08017003</td>
<td>现代设计理论与方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08017004</td>
<td>现代测试导论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>专业基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08036003</td>
<td>可靠性设计（高等可靠性工程）</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08026002</td>
<td>热设计与电磁兼容结构设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08026005</td>
<td>振动理论与声学原理（振动理论）</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>08888001</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>非学位选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>其他选课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>必修环节</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>2</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>2</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生的知识面，博士生应广泛参加学术活动，在校期间必须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考察博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文的工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第学期末之前，最迟应在第四学期末之前完成开题报告。
 （2）开题报告的形式。开题报告应以报告会的形式，开题报告会至少须有本学科及相近学科3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
 （3）开题报告的组成。依据《开题报告表》的要求，做开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
 （4）若开题报告没能通过，应终止博士生学业（退学处理）。

2. 论文工作
 博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评
 （1）学位论文开题一年后，博士生向学院的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
 （2）若中期考评没能通过者，应终止博士生学业。
 （3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
 博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）

5. 学位论文的撰写
 博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做工作，共同部分应加以说明。学位论文应符合《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
 （三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
光学工程学科 博士研究生培养方案

（专业代码：080300）

光学工程学科主要研究光信息获取、光存储、光传输、光交换、光信息处理，以及光电图像显示等方向领域，该学科在军事及民用领域有广泛的应用，是当今信息产业的重要支柱学科之一。

我校光学工程主要从事覆盖整个光学工程学科的理论及其相关应用方面的教学与科研，特别是在光通信、集成光学与光电子器件、红外与传感技术、平板显示与成像技术等方面具有特色和优势，该学科承担了多项国家重点科研项目，科研经费充裕，且获得国家及部省级科研成果奖多项。该学科主要研究方向在国内处于前列，在国际上也有一定影响。

一、培养目标

本学科博士学位获得者应具有坚实的数学物理基础知识、系统的学科领域知识和精深的研究方向知识；学术视野开阔，学术思想活跃，创新意识强，了解光学工程学科现状、发展方向和前沿；具有严谨求实的科学态度和工作作风；能用英语撰写学术论文，能在国际学术会议上交流研究内容；能独立从事光学工程学科的基础理论和学科前沿课题的研究，能做出创新性的国际认同的研究成果；能胜任光学、光电子学等相关领域的项目研发及高等院校的教学工作。

二、研究方向

1. 光通信与集成光学
2. 激光技术及应用
3. 光电探测与系统集成
4. 显示与成像
5. 微波光子学
6. 真空电子学
7. 微纳光子学
8. 光电测控与仪器
9. 光伏能
10. 敏感电子学与传感网
11. 光纤传感
12. 生物光子学

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

光学工程学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006005</td>
<td>高等数值分析</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>20007002</td>
<td>*非线性光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017002</td>
<td>光电成像导论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>05017013</td>
<td>光电探测原理与技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td>非学位选修课</td>
<td>05017005</td>
<td>显示技术导论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>05017009</td>
<td>微传感器原理与技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>05017010</td>
<td>光通信器件与技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>05017011</td>
<td>红外与传感技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>05017012</td>
<td>量子光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>03037001</td>
<td>材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>01047005</td>
<td>光纤传感技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>其它选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
4. 黄维，密保秀，高志强 著，有机电子学，科学出版社，2011年
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - （2）博士生综合考试由学位评定委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 - （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
 - （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授，组成开题报告小组，并作出考覈意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业(退学处理)。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考核小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考核小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考核小组对博士生论文工作进行认真审查，并将考核意见填入《中期考核表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考核表》交各学院研究生科保存，以备检查。

（2）若中期考核没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考核。2 次考核不过者，应终止博士生学业。

（3）学位论文中期考核通过 1 年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所学学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士学位论文经导师（或导师小组）及学院批准，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
仪器科学与技术学科 博士研究生培养方案

（专业代码：080400）

仪器科学与技术是信息领域的重要组成部分，其主要研究内容包括：信号或信息的获取方法及转换放大与处理技术、测量方法学、计量学以及仪器工程学与测控系统工程学等。仪器科学与技术学科具有自身可持续发展的优势，具有突出的学科交叉性和科技前沿性等显著的特点，对高新科技与工业的发展和社会进步具有重要的引领作用和推动作用。

我校仪器科学与技术学科源于学校1956年创办的“电子测量技术及仪器”专业，是国内电子测量技术高层次人才培养基地之一。拥有一级学科博士点、博士后流动站，是四川省一级学科重点学科。学科教学科研实力雄厚，在多年的发展和建设中，形成了宽带时域测试技术及仪器、电子系统综合测试诊断与预测、微波与通信测试技术及仪器、集成电路测试与可测性设计理论及技术等研究方向，具有显著的电子测试优势和鲜明的军事电子特色，工程研究能力突出。

一、培养目标

本学科博士学位获得者应在仪器科学与技术学科的研究领域中具有坚实宽广的基础理论和系统深入的专门知识；能够深入了解本学科某一方向的发展现状及国际科学与技术前沿；能够从事高水平的理论和实验研究，并在某一方面取得创造性的研究成果；具有很强的独立从事科学研究和技术创新的能力，有严谨求实的科学作风；应至少熟练地掌握一门外国语，能熟练地阅读本专业的外文资料，具有一定的外语写作能力和进行国际学术交流的能力；能作为高层次人才胜任本学科或相近学科的科研、教学、工程开发或技术管理工作。

二、研究方向

1. 宽带时域测试技术及仪器
2. 电子系统综合测试诊断与预测
3. 微波毫米波测试技术及遥感
4. 集成电路测试与可测性设计理论及技术
5. 新型传感技术与精密测量

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

电子科技大学博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>07017001</td>
<td>现代信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017002</td>
<td>集成电路诊断测试与可测性设计技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>07017003</td>
<td>计算智能理论与方法</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017006</td>
<td>现代频域测试</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017007</td>
<td>电子系统故障预测与健康管理系统</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其它选修课</td>
<td>13006003-13006005</td>
<td>第二外国语(日语、德语、法语)</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
 中文翻译版：蒋安平等. 《超大规模集成电路测试：数字、存储器和混合信号系统》. 电子工业出版社. 2004

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题......
课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。

社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，由导师在指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
材料科学与工程学科 博士研究生培养方案

（专业代码：080500）

“材料科学与工程”是主要研究材料的组成、结构、制备工艺与其性能及使用过程间相互关系的科学与技术，主要研究电、磁、声、光、热、力及生物等功能材料及应用的理论、设计、制备、检测等，涉及到信息的获取、转换、存储、处理与控制等。它包括“材料学”与“材料物理与化学”两个二级学科。

随着科学技术的发展，本学科与其它学科的交叉越来越紧密，如微电子学与固体电子学、电子科学与技术、信息与通信工程、计算机科学与技术、控制科学与工程、仪器科学与技术、生物医学等。我校是国家“211”工程重点建设学科，特色和优势在于对电子信息材料及应用的研究和开发。本学科现有博士生导师5名，教授18名和一批由年轻博士为梯队的学术队伍，拥有先进的实验设备和充足的科研经费。

作为当代文明的重要支柱，本学科已成为现代科学技术发展的先导和基础，与整个社会的发展有着极为密切的依存关系。

一、培养目标

本学科定位于培养材料科学与工程领域，特别是电子信息材料的物理与化学方面具备坚实基础理论，系统专业知识，掌握必要的电子科学、计算机应用及材料的微观结构分析和宏观特性测试技术，熟识各种新型材料的研制、加工和测试分析技术，具有熟练的计算机技能和外语水平，能从事材料科学与工程研究、教学工作或工程技术与工程管理的高级人才。

本学科博士学位获得者应：政治合格、热爱祖国、热爱人民、献身伟大祖国的社会主义现代化建设事业；学风正派、工作严谨求实，善于与人团结共事，能胜任本专业的科研、教学、产业部门的技术工作、或以上领域的技术管理工作等。

二、研究方向

1. 电子材料与工程 2. 磁性材料与工程
3. 半导体材料及器件 4. 材料化学与工程
5. 纳米及低维结构材料与器件 6. 电子薄膜与集成电路
7. 材料分析表征 8. 有机电子材料与工程
9. 能源材料

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。
学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>材料科学与工程学科 博士研究生课程设置</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003 中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>基础课</td>
<td>13006001 博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13006002 博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>基础课</td>
<td>10006001 泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20006008 应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>专业基础课</td>
<td>03036007 固体微观理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03036001 材料物理学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>专业选修课</td>
<td>03017004 纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>03037001 材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>04887001 学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>其他选修课</td>
<td>13006003-13006005 第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16006004 马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006 自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>跨学科相关课程</td>
<td>二选一</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>必修环节</td>
<td>00006001 教学实践</td>
<td></td>
<td></td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006002 社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006003 学术活动（十次）</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006004 论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006005 博士生综合考试</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典著作清单：

1. 何观志、黄维. 固体中的电输运. 北京：科学出版社，1991
2. 冯端、冯步云. 放眼晶态之外—漫谈凝聚态物质之二. 湖南教育出版社，1994
3. 冯端、等. 金属物理学. 第二卷. 科学出版社，1990
4. 方俊鑫，殷之文. 电介质物理学. 北京：科学出版社，1998
5. 冯端，师昌绪，等. 材料科学导论. 北京：化学工业出版社，2002
6. 冯端，刘治国. 凝聚态物理新论. 上海：上海科技出版社，1992
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
 - （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担当专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 - （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期中之前，最迟应在第四学期期中之前完成开题报告。
 - （2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以
是教授或具有博士学位的副教授（尽量为博士生导师），并作出考证意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告不能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家），考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没有通过，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士学位论文到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
物理电子学学科 博士研究生培养方案

（专业代码：080901）

物理电子学是电子学、近代物理学、光电子学及相关技术的交叉学科，主要在电子工程和信息科学技术领域内进行基础和应用研究。近年来本学科发展迅速，不断涵盖新的学科领域，促进了电磁场与微波技术、微电子学与固体电子学、电路与系统等二级学科以及信息与通信系统、光学工程等相关一级学科的拓展，形成了若干新的科学技术增长点。

本学科为全国重点学科，有以中国科学院院士刘盛纲教授为学术带头人，一批知名教授和许多年青博士组成的高水平的学术梯队，在相对论电子学、微波电子学、微波等离子体、太赫兹电子学等研究方向上处于国内领先水平，并有广泛国际影响。拥有两个国家级重点实验室（分部），是国家“211”和“985”重点建设学科。

一、培养目标

本学科博士学位获得者应掌握本学科坚实宽广的基础理论，对所从事的研究方向及相关领域具有系统深入的专门知识，掌握相关学科中有关领域的研究和发展趋势，熟练掌握相关的实验技术和计算机技术，对本学科的某一方面有深入的研究并有独创性的研究成果。至少熟练掌握一门外语。

具有独立从事科学研究、指导和组织课题进行研究工作的能力以及严谨求实的科学态度和工作作风，具有成为该学科学术带头人的素质。

二、研究方向

1. 太赫兹电子学与技术
2. 毫米波电子学与器件
3. 微波电子学与CAD技术
4. 高功率微波技术
5. 等离子体电子学
6. 抗电磁学及其工程应用
7. 计算电磁学及其工程应用
8. 微波能应用
9. 医学电子学

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

物理电子学学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td>公共基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语写作</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016002</td>
<td>偏微分方程数值解法</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006005</td>
<td>高等数值分析</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027001</td>
<td>非线性理论和方法</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027002</td>
<td>电子回旋脉塞理论与技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026003</td>
<td>半导电子学与微真空电子学</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026005</td>
<td>带电粒子的电磁辐射及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>专业基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04056003</td>
<td>相对论电动力学</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027003</td>
<td>强流电子光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026006</td>
<td>电磁场有限元方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026002</td>
<td>微波电子学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>非学位选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>其他选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006001 二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006002 社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006003 学术活动 (十次)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006004 论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006005 博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术氛围并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施，考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
电路与系统学科 博士研究生培养方案

（专业代码：080902）

本学科从1979年开始招收研究生，是首批具有硕士学位授予权的学科。1986年获博士学位授予权，首批国家重点学科，并设有博士后流动站，也是“长江特聘学者”设岗学位学科。本学科主要研究电路与系统的理论、分析、测试、设计和物理实现。它是信号与信息处理、通信、控制、计算机乃至电力、电子等诸方面研究和开发的理论与技术基础。本学科与信息和通信工程，计算机科学与技术，生物医学工程等学科交叠，形成一系列的边缘、交叉研究方向。本学科在非线性电路理论、非线性动力学、人工神经网络及计算智能、高稳定相噪微波毫米波频率合成技术、微波电路、大规模集成电路设计等方面保持着国内领先态势，取得了一系列接近国际先进水平的成果。

本学科现有博士生导师8人，教授11人，副教授（含高工）22人，并配备有非线性与复杂系统中心、微波中心、射频微波电路系统实验室等先进的研究中心及实验室，提供了与本学科培养方向有关的先进实验技术和手段。它是信号与信息处理、通信、控制、计算机乃至电力、电子等诸方面研究和开发的理论与技术基础。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，具有坚实的数理基础，掌握电路与系统学科的基础理论知识和基本实验技能，了解本领域的研究动态，深入系统地掌握专业知识，具备良好的科学文化素养以及严谨求实的科学态度和工作风。不仅要有获取知识的能力，而且要具备灵活运用所学知识分析问题、解决问题的能力及从事创新研究的能力。能应用至少一门外国语撰写高水平学术论文，并能在国际会议上进行交流。同时在所从事的研究方向及其相关领域中，有深入的研究和独创性的成果。具有独立从事科学研究工作的能力，具备成为学术带头人或课题负责人的素质，能独立承担科学或国民经济建设有重要意义的研究和开发课题。能胜任高等院校、研究机构和产业部门相关方向的教学、研究、工程、开发及技术管理等工作。

二、研究方向

1. 非线性电路与系统
2. 射频、微波、毫米波电路与系统
3. 数字、模拟集成电路及验证技术
4. 数字高频混合集成电路
5. 微波集成电路
6. 集成电路中的信号完整性设计
7. RF MEMS
8. 绿色能源技术
9. 计算智能

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“★”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修。
学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。

五、课程设置

电路与系统学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>02057002</td>
<td>射频集成电路</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057003</td>
<td>现代电路理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业</td>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>02045001</td>
<td>信号理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057005</td>
<td>VLSI电路和系统设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057006</td>
<td>RF MEMS及系统集成</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057012</td>
<td>现代通信中的发射机技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057008</td>
<td>软硬件协同设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057009</td>
<td>人工神经网络与计算智能</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
博士生自学本领域经典专著清单列表不做具体限定，由导师自行选定和指导，自学完成后提交导师签字的读书笔记。

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
 （4）各学科根据实际情况每年举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2．论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3．中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填写《中期考评表》，对未按论文工作计划完成工作阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4．发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5．学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
微电子学与固体电子学学科 博士研究生培养方案

(专业代码：080903)

微电子学与固体电子学是电子科学与技术与信息科学技术的先导和基础，是我国二十一世纪重点发展的学科之一。主要研究半导体物理与器件，电子材料与固体电子元器件，超大规模集成电路的设计与制造技术，系统芯片技术，电路组件与系统，微机电系统等。它涉及到电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技术、电子材料科学与工程、自动控制学以及计算机科学与技术等多个学科。这一学科的发展非常迅速，目前已进入了超大规模集成电路为主要标志的发展阶段。其主要发展方向是超深亚微米物理与技术，集成电路与系统技术，新型固体电子器件，纳米电子器件以及微机电系统。

我校本学科是国家重点学科，有一支以科学院院士、教授、博士生导师、教授、副教授以及一批青年博士、硕士组成的学术队伍，研究领域涵盖了新型半导体功率器件与智能功率集成电路等方面。在国内外享有盛誉，并与国内外相关的学校和研究机构建立了广泛的合作联系。

一、培养目标

本学科博士学位获得者应具有微电子学与固体电子学方面坚实宽广的基础理论和系统深厚的专著，能熟练运用计算机和仪器设备进行实验研究，具有较强的独立分析问题和解决问题的能力。不仅对本学科的某一方面有深入的了解，而且在该方面有一定的研究成果。应掌握一门外语。具有严谨求实、敬业创新和团结合作的品德，具有作为项目主持者乃至学术领头人的素质，能胜任本专业科研、教学或产业的技术管理职责。

二、研究方向

1. 新型半导体材料与功率器件
2. 功率集成电路与系统
3. 大规模集成电路与系统
4. 专用集成电路与系统
5. SOC/SIP 系统芯片技术
6. 微电子学理论与技术
7. 电子薄膜与集成器件

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课，必修环节不低于 2 学分。专业基础课中“**”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修一至二门学位课作为本学科的学位课。

学位课可替代非学位课，非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。
研究生应在导师指导下制定个人培养计划和具体选修。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>03017004</td>
<td>纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036007</td>
<td>固体微观理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03016004</td>
<td>量子微电子学</td>
<td>50</td>
<td>2.5</td>
<td></td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>03017005</td>
<td>模拟集成电路分析与设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017003</td>
<td>半导体功率器件与智能功率 IC</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017002</td>
<td>微细加工与 MEMS 技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017006</td>
<td>SOC 软硬件协同设计与验证技术</td>
<td>40</td>
<td>2</td>
<td></td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
六、必修环节
博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅答答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案。全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 - 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文
（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 - 开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 - 开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题
报告会至少须有本学科及相近学科的3位专家组成。导师可以作为其中1位专家。另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)。并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月内才能申请重新开题。2次开题报告不过者，应终止博士生学业(退学处理)。

（5）若因正当原因曾选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2．论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年。论文工作期间应每2周一次向导师汇报研究进展。

3．中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告(在学院的学术交流论坛公开举行)。考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家。另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成(尽量为参加过开题报告的专家)。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》。对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后方能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4．发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文(详见我校《博士研究生发表论文的要求》)。

5．学位论文的撰写
博士学位论文应在导师(或导师小组)的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士学位论文到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
电磁场与微波技术学科 博士研究生培养方案

（专业代码：080904）

我校“电磁场与微波技术”学科是首批国家重点学科，首批“长江学者”计划特聘教授设岗学科，也是“211工程”重点建设学科。其研究范畴主要包括：电磁场理论与计算电磁学；天线与电磁散射；微波与毫米波理论与技术等。主要交叉学科有：信息与通信工程；光学工程；计算机科学与技术；材料科学与工程；生物医学工程等。本学科的优势主要包括：微波理论、微波毫米波电路与系统、天线理论与技术、计算电磁学、电磁散射与逆散射、微波测量理论与技术、非均匀介质中的场与波、微波集成电路、微波遥感理论及应用、电磁兼容、太赫兹固态技术、电波传播等。

我校“电磁场与微波技术”学科于1981年首批获得博士学位授予权，1988年首批设博士后流动站，学术队伍水平高，结构合理，现有博士生导师22名，教授20名。现有实验条件包括：极高频复杂系统国防重点学科实验室、计算电磁学实验室、大型微波暗室等，为研究生培养提供了先进的测试平台和试验环境。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，对本学科研究前沿和发展趋势有系统深入的了解，在电磁场与微波技术、电路理论及相关学科方面有坚实宽广的理论基础，具有独立完成本学科相关实验研究的能力，能应用至少一门外语撰写高水平学术论文，并能在国际会议上进行交流。有严谨求实的科学态度和工作方法，能独立从事科学研究，对本学科某方面具有深入研究并取得独创性成果，能独立承担相关的研究和开发课题，具备成为学术带头人或项目负责人的素质。

二、研究方向

1. 微波理论
2. 天线理论与技术
3. 电磁散射与逆散射
4. 计算电磁学
5. 微波毫米波电路与系统
6. 非均匀介质中的场与波
7. 微波测量理论与技术
8. 微波遥感理论及应用
9. 太赫兹固态技术
10. 电波传播

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长期限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。
电子科技大学博士研究生培养方案

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2分学，应在导师指导下学习外文原著一本。

五、课程设置

电磁场与微波技术学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听力</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001</td>
<td>高等量子力学</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>20006002</td>
<td>高等电磁场理论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006005</td>
<td>应用电磁学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02036001</td>
<td>近代微波网络理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>02057011</td>
<td>非线性微波电路与系统</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037003</td>
<td>电磁理论中的并矢格林函数</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037004</td>
<td>瞬变电磁场</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>学科前沿专题讲座</td>
<td></td>
<td></td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>公共选修</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02037003</td>
<td>电磁理论中的并矢格林函数</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037004</td>
<td>瞬变电磁场</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01006004</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。由导师给出评语，学院给予书面证明，报所在学院备案。完成后获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成者获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实际工程应用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前。

（2）开题报告的方式。开题报告以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作
电子科技大学博士研究生培养方案

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用学术论文三篇以上，其中至少两篇是在 SCI 检索刊源上或者被 SCI 检索。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
电子信息材料与元器件学科 博士研究生培养方案

（专业代码：0809Z1）

现代信息及电子系统的发展离不开电子信息材料与元器件。电子信息材料的设计、验证和新的合成工艺又必须与器件相结合，二者相辅相成，缺一不可。从未来的发展看，我国已成为世界电子信息材料和元器件的生产大基，电子陶瓷材料、磁性材料与器件、电阻、电容、电感、变压器、电子电源、微特电机等均已成为世界产量第一大国，复合型的基础电子技术学科方向和人才培养是必然之路，设立电子信息材料与元器件学科是培养高水平电子人才的必要手段。可以说，我国的电子材料与元器件影响着世界电子市场，并且不断开拓新的技术领域和研究方向。随着信息技术产业技术不断发展，特别是电子信息与器件和纳米电子技术方面的系统专门知识高级人才的需求是非常迫切的。本学科属于国家一级授权学科“电子科学与技术”的二级分学科，具有较强的导师队伍和技术梯队，依托国家、省部级和国防重点实验室的先进制造设备、测试设备及教育软硬环境，为培养电子材料与元器件的高水平人才打下了坚实的基础。

一、培养目标

该学科、专业培养目标：博士学位获得者应具有电子信息材料及元器件，特别是Si基上的电子信息材料与元器件，固态SOC的计算机设计、模拟和仿真知识。既侧重于电子材料、磁性材料、半导体材料和光电材料的开发和产业化应用研究，又重视博士生掌握硅基电子器件、新型电子器件、LTCC器件及纳米器件的最新研究领域和应用技术，还培养博士生拥有用计算机对器件及组合系统的设计与优化技术，熟悉并掌握各种新型器件的制造过程，具有较强的独立从事科研工作及分析问题能力，掌握1—2门外语，对本学科的某一方面不仅有较深入了解，而且有一定研究成果，学风正派，工作严谨求实，善于与人团结共事，能胜任本专业科研、教学或产业部门的技术工作及管理工作。

博士学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国社会主义建设事业。

二、研究方向

1. 信息材料与元器件
2. 纳米电子学及自旋电子学
3. 新型微波器件
4. LTCC材料及片式元器件设计技术
5. 电子薄膜与集成器件
6. 隐身材料与技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课：必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1—2门学位课作为本学科的学位课。
电子科技大学博士研究生培养方案

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。

五、课程设置

电子信息材料与元器件学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017004</td>
<td>纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036007</td>
<td>固体微观理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位课</td>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017002</td>
<td>微细加工与MEMS技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03037001</td>
<td>材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03027002</td>
<td>材料设计与计算</td>
<td>40</td>
<td>2</td>
<td></td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td>1</td>
<td></td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：

电子信息材料与元器件学科
博士研究生培养方案

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业，指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - 博士生综合考试由学位评定委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
 - 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 - 开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 - 开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题
报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)。另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)。另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)。

（3）开题报告的内容。根据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
信息与通信工程学科 博士研究生培养方案

（专业代码：081000）

电子科技大学“信息与通信工程”一级学科是国家重点学科，包含3个二级学科，即属于国家重点学科与长江学者计划特聘教授设岗的两个二级学科“通信与信息系统”和“信号与信息处理”，根据我校特色与优势、反映学科前沿方向而设置的二级学科“信息获取与探测技术”。我校“信息与通信工程”相关学科是国内首批获博士学位授予权、首批设立博士后流动站的学科，也是首批“211工程”和“985工程”重点建设学科，2002年两个二级学科均被评为国家重点学科，2007年被评为一级学科国家重点学科。本一级学科现有工程院院士1名、千人计划入选者6名（其中青年千人3名）、长江学者2名、国家教学名师1名、教育部科技评委2名、国务院学科评议组成员1名，教育部新世纪优秀人才18名，已形成在国内外具有较大影响的高水平学术研究团队。学科点设有国家级重点实验室、教育部重点实验室，拥有一大批国际水平的实验仪器设备。

本学科与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科的研究领域密切相关。

一、培养目标

本学科博士学位获得者应具有通信与信息科学领域坚实的理论基础和相关的数理基础，完整准确掌握所研究方向上学术与技术发展的国内外现状和趋势，具有系统的深入的专业知识和与通信与信息科学相关的广博知识；具有独立从事本学科领域中的前沿课题的研究能力，能够提供创新并创优的科学研究成果；至少熟练掌握一门外语，具有在专业上的正确写作和人际交流能力。

学位获得者应有严谨求实的学风，高尚的职业道德，能独立承担和完成各类研究课题，并应具有学术带头人的素质，能胜任科研、教学和技术管理工作。

学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 现代通信信号处理
2. 通信网络与宽带通信技术
3. 通信网络中的信息安全技术
4. 通信 RFIC 及 SOC 技术
5. 资源探测中的信息技术
6. 毫米波通信技术
7. 数字图像音视频处理
8. 定量遥感
9. 遥感图像处理与识别
10. 空间数据挖掘

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“**”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。
学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。
研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006003</td>
<td>最优化理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016019</td>
<td>统计学习理论与应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位课</td>
<td>01017003</td>
<td>分组交换网的性能分析与优化</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006024</td>
<td>随机过程与排队论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016006</td>
<td>特殊矩阵</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26016001</td>
<td>宽带无线通信技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26017001</td>
<td>通信工程的数学建模与性能评估</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>01016009</td>
<td>ASIC 设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016011</td>
<td>无线互联网</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016017</td>
<td>互联网安全</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016018</td>
<td>高级计算机网络(1)-原理与体系结构</td>
<td>40</td>
<td>2</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01017002</td>
<td>光纤通信</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01017004</td>
<td>通信信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01017006</td>
<td>Core concepts and key methodologies for modern networking Ⅱ</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>02046001</td>
<td>自适应信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02047004</td>
<td>谱估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017001</td>
<td>微波成像理论与实现</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18887001</td>
<td>微波遥感与合成孔径雷达应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其它选修课</td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
信息与通信工程学科 博士研究生培养方案

<table>
<thead>
<tr>
<th>课程代码</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>公共选修</th>
</tr>
</thead>
<tbody>
<tr>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>公共选修</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生自学本领域经典专著清单：

 - 《无线通信与移动通信中信号处理研究的新进展》，电子工业出版社，2004
 - 《通信网：基本概念与主题结构》
 - 蔡涛等译，《无线通信原理与应用》，电子工业出版社
博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
（2）博士生综合考试由学位评定委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。
（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中一位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过 1 年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。
3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的评议小组作论文工作进展报告（在学院的学术交流论坛公开举行），评议小组由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成。
加开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士学位论文到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
通信与信息系统学科 博士研究生培养方案

（专业代码：081001）

“通信与信息系统”隶属于“信息与通信工程”一级学科，本学科点是国家重点学科、长江学者计划特聘教授设岗学科，1986年本学科点即被批准为博士点，也是首批“211工程”重点建设学科。该学科点拥有一支由工程院院士、千人计划入选者、国家教学名师等高级别人才组成的方向齐全、结构合理的学术队伍，拥有由国家级重点实验室、多个省部级重点实验室和一批“985工程”、“211工程”重点建设实验室等构成的科研与人才培养平台，在电子信息领域具有学科交叉和相互支撑的综合优势，在多个相关领域具有国内领先的技术水平，是我国通信与信息系统研究的重要基地之一。

“通信与信息系统”学科研究范畴包括移动通信、多媒体通信，光纤通信以及通信网络技术、专用集成电路设计与研究等，与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科的研究领域密切相关。

一、培养目标

本学科博士研究生应具有通信与信息科学领域坚实的理论基础和相关的数理基础，正确掌握所研究方向上学术与技术发展国内外现状和趋势，具有系统的深入的专业知识和与通信与信息科学相关的广博知识；具有独立从事本学科领域中的前沿课题的研究能力，能够提供创新并创新的科学研究成果；至少熟练掌握一门外语，具有在专业上的正确写作和人际交流能力。

学位获得者应有严谨求实的学风，高尚的职业道德，能独立承担和完成各类研究课题，并具有学术带头人物项目负责人的素质，能在科研、教学和管理工作。

学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 通信网络技术
2. 光纤通信与器件
3. 无线与移动通信
4. 多媒体通信
5. 卫星通信技术
6. 通信抗干扰技术
7. 资源探测中的信息技术
8. 通信专用集成电路与数模混合SOC设计
9. 图象传输与处理
10. 现代通信中的信号处理
11. 通信RFIC及SOC技术
12. 毫米波通信技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相关学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。
学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。
研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。

五、课程设置

通信与信息系统学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20006003</td>
<td>最优化理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06016019</td>
<td>统计学习理论与应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>专业基础课</td>
<td>01017003</td>
<td>分组交换网的性能分析与优化</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10016006</td>
<td>特殊矩阵</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20006024</td>
<td>随机过程与排队论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26016001</td>
<td>宽带无线通信技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26017001</td>
<td>通信工程的数学建模与性能评估</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>非学位选修课</td>
<td>01016009</td>
<td>ASIC 设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01016011</td>
<td>无线互联网</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01016017</td>
<td>互联网安全</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01016018</td>
<td>高级计算机网络(1)--原理与体系结构</td>
<td>40</td>
<td>2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01017002</td>
<td>光纤通信</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01017004</td>
<td>通信信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>01017006</td>
<td>Core concepts and key methodologies for modern networking Ⅱ</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>02047004</td>
<td>谱估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>其它选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
</tbody>
</table>
博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. **教学实践、社会实践**为二选一，完成后获得1个学分。
 - **教学实践**：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 - **社会实践**：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. **学术活动**：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. **博士生综合考试**：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

博士生自学本领域经典专著清单：

 - 刘郁林、邵怀宗译，《无线通信与移动通信中信号处理研究的新进展》，电子工业出版社，2004
 - 《通信网：基本概念与主题结构》
 - 蔡涛等译，《无线通信原理与应用》，电子工业出版社

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. **教学实践**：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
2. **社会实践**：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。
3. **学术活动**：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。
4. **博士生综合考试**：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题，试卷，口试记录及评语等由所在学院研究生秘书收集后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)和作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考核。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考核

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期评估表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期评估表》交各学院研究生科保存，以备检查。

（2）若中期考核没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考核。2次考核不过者，应终止博士生学业。

（3）学位论文中期考核通过1年后方能申请学位论文答辩。
4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
信号与信息处理学科 博士研究生培养方案

（专业代码：081002）

我校“信号与信息处理”学科原属“信号、电路与系统”博士点学科，1981 被批准为首批博士点，1988 年被批准为全国重点学科，是首批设立博士后流动站的学科，和教育部 211 工程、985 工程重点建设学科。目前学科拥有博士生导师 19 名、教授 19 名，在高层次人才培养及学科领域内多方面的科学研究工作中取得了丰硕成果，是我国信息处理领域的一支重要力量。

“信号与信息处理”学科研究范畴包括雷达系统、阵列信号处理、图象处理、非合作信号处理等，与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科的研究领域密切相关。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，献身于伟大祖国的社会主义建设事业。具有信息科学方面宽广坚实的理论基础，系统深入的专业知识和深厚的数理基础，并掌握电子科学、计算机科学、自动控制科学等相关的基础知识，深入了解和掌握本学科国内外现状、前沿和发展趋势，具有独立从事本学科领域中的基础理论课题及前沿课题的研究、开发能力，并提供创新的科学研究成果。至少熟练掌握一门外语，具有“读、写、听、说”能力。

学位获得者应有严谨求实的学风，高尚的职业道德，能独立承担和完成各类研究课题，并应具有学术带头人或项目负责人的素质，能胜任科研、教学和技术管理工作。

二、研究方向

1. 雷达系统
2. 雷达信号与信息处理
3. 雷达成像
4. 雷达目标识别
5. 自适应及阵列信号处理
6. 数字图像及音视频处理
7. 非合作信号处理
8. 现代通信信号处理技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于 2 学分。专业基础课中有“*”标志的为全校选修专业基础课。允许相同学科之间、工科与理科之间跨学科选修 1~2 门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课，并完成非学位课中的自学课程（2 学分）。

· 91 ·
五、课程设置

信号与信息处理学科

博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016006</td>
<td>特殊矩阵</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>01016009</td>
<td>ASIC 设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017001</td>
<td>微波成像理论与实现</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02046001</td>
<td>自适应信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02047004</td>
<td>谱估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017005</td>
<td>压缩感知理论及其应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单

博士生应阅读导师推荐的外文经典著作一部，并撰写阅读笔记。

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课，辅导答疑，批改作业，指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的。主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应在入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷及口试记录等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题并开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行。开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。
2. 论文工作

博士生在导师指导下按计划进行论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统性的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
信息获取与探测技术学科 博士研究生培养方案

（专业代码：0810Z1）

“信息获取与探测技术”是根据我校特色与优势，反映学科前沿方向而设置的二级学科。“信息获取与探测技术”从信息获取与利用角度，研究目标信息的获取方法和探测系统实现技术，该二级学科主要研究目标收集的时间－空间－频率方式、回波中的目标信息存在方式、有效提取目标信息的方法、实现目标信息获取的探测系统体系结构及实现技术和多探测系统的目标信息融合技术。

“信息获取与探测技术”学科现有教授5名，副教授10名，有一支稳定的学术科研队伍。拥有先进的仪器设备与实验条件。本学科与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科的研究领域密切相关。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，献身于伟大祖国的社会主义建设事业。具有通信科学、信息科学方面宽广坚实的理论基础，系统深入的专业知识和深厚的数理基础，并掌握电子科学、计算机科学、自动控制科学等相关的基础知识，深入了解和掌握本学科国内外现状、前沿和发展趋势，具有独立从事本学科领域中的基础理论课题及前沿课题的研究、开发能力，并提供创新的科学研究成果。至少熟练掌握一门外语，具有“读、写、听、说”能力。

学位获得者应有严谨求实的学风，高尚的职业道德，能独立承担和完成各类研究课题，并应具有学术带头人或项目负责人的素质，胜任科研、教学和技术管理工作。

二、研究方向

1. 雷达系统
2. 雷达信号与信息处理
3. 雷达成像
4. 雷达目标识别
5. 自适应及阵列信号处理
6. 非合作信号处理
7. 现代通信信号处理技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课，必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

信息获取与探测技术学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td></td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10060001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20060008</td>
<td>应用数学理论和方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016006</td>
<td>特殊矩阵</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017001</td>
<td>微波成像理论与实现</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02046001</td>
<td>自适应信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02047004</td>
<td>谱估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017005</td>
<td>压缩感知理论及应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017006</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00060006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

阅读一本由指导教师指定的外文原著，并用英语撰写一篇读书报告，交导师签字。

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报
所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期末之前，最迟应在第四学期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须由3位专家及所在学科的3位专家、导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师),并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告未能通过，在导师的指导下3个月后才能重新开题。2次开题报告不过者，应终止博士生学业(退学处理)。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以由教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，由导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
信息安全学科 博士研究生培养方案

(专业代码：0812Z1)

信息安全是信息技术领域的新兴学科，它涉及到计算机、通信、网络以及社会等各个方面。知识领域包括密码学与保密技术、计算机系统安全、网络与通信安全、软件安全、信息系统安全的理论、技术、管理、工具与方法，也涉及到高科技犯罪与道德法律等领域。信息安全的相关领域是国内外研究热点。随着网络的普及和社会的信息化，信息安全技术得到国家和社会各方面前所未有的关注和广泛的应用。培养信息安全学科高级人才，满足当前对信息安全研究和开发人才的需求，是本培养方案的宗旨。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，具有坚实的数学基础知识、系统的学科领域知识和精深的研究方向知识；学术视野开阔，学术思想活跃，创新意识强，了解学科现状、发展方向和前沿；能用英语撰写学术论文，能在国际学术会议上交流研究内容；能独立从事计算机领域内的基础理论和学科前沿课题的研究，能做出创新性的国际认同的研究成果；可承担大型软件或重大计算机应用项目的开发和设计；能胜任高等院校的教学工作。

二、研究方向

1. 密码算法设计与评估理论
2. 网络信息安全理论与应用技术
3. 信息对抗理论与技术
4. 移动计算中的安全
5. 基于生物特征的信息安全技术
6. 可信计算
7. 多媒体安全
8. 几何密码与视觉密码
9. 云计算安全
10. 物联网安全

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于 2 学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程 2 学分，应在导师指导下学习。
五、课程设置

信息安全学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语写作</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>06066005</td>
<td>有限域及其应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067006</td>
<td>信息论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业学位课</td>
<td>06016019</td>
<td>统计学习理论与应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067005</td>
<td>计算机通信网络与安全</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>06066002</td>
<td>现代密码理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067001</td>
<td>安全协议与标准</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067007</td>
<td>网络信息对抗</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06066004</td>
<td>计算复杂性</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067002</td>
<td>逆向工程</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017007</td>
<td>并行计算</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017009</td>
<td>可信计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067004</td>
<td>小波分析理论与应用</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017013</td>
<td>云计算</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017012</td>
<td>大数据分析与挖掘</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067006</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展博士学位论文工作。

1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
控制科学与工程学科 博士研究生培养方案

（专业代码：081100）

控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。控制科学以控制论、系统论、信息论为基础，研究各应用领域的共性问题，即为了实现控制目标，如何建立系统的模式，分析其内部与环境信息，采取何种控制与决策行为；且与各应用领域的密切结合，又形成了控制工程丰富多彩的内容。本学科在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势，在我国国民经济发展和国家安全方面发挥了重大作用。

我校控制科学与工程学科为四川省重点学科，师资力量雄厚，形成了现代信号处理与检测技术、模式识别与机器人、测控通信与导航控制、新能源及控制技术等研究方向，具有电子测试优势明显，军事电子特色鲜明，工程研究能力突出等特点。本学科的发展受益于社会和国家的发展，同时也在国家的决策咨询、国防建设、行业推动、社会服务、人才培养等方面做出了突出的贡献。

一、培养目标

培养学生在自动控制理论、人工智能、模式识别、系统工程、计算机应用、信息与信号处理、系统设计与仿真、检测技术等方面掌握坚实宽广的基础理论和系统深入的专门知识，具有独立从事控制科学理论研究和解决控制工程问题的能力，具有组织科学研究、技术开发与专业教学的能力，熟悉本学科最新研究成果和发展动态，能够熟练运用一门外国语进行学术论文写作和交流，成为控制科学与工程学科的高级专门人才。

二、研究方向

1. 现代信号处理与检测技术
2. 模式识别与机器人
3. 测控通信与导航控制
4. 新能源及控制技术
5. 复杂系统与智能优化
6. 定量遥感与遥感图像处理
7. 微波与通信导航测试
8. 飞行器控制及多源数据融合技术
9. 空间运行与交通管理技术
10. 空间系统仿真、测试、验证与评估技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分，专业基础课中有“**”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

控制科学与工程学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位</td>
<td></td>
<td>公共基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听说</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016011</td>
<td>时间序列分析</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017001</td>
<td>现代信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07047002</td>
<td>模式识别与机器学习</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017003</td>
<td>计算智能理论与方法</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07026005</td>
<td>自适应控制</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07026006</td>
<td>非线性系统理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07037001</td>
<td>现代检测技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07047003</td>
<td>计算机视觉</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>专业选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>第二外国语(日语、德语、法语)</td>
<td>90</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>其它选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td>1</td>
<td></td>
<td></td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
 中文翻译版: 阿雷尼，韦伯斯特著,张伦译.传感器和信号调节(第2版).清华大学出版社. 2003
4. David Forsyt, Jean Ponce, 林学訚译.《计算机视觉：一种现代方法》.电子工业出版社.200407
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

2004
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行。开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月内才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考核。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考核

（1）学位论文开题一年后，博士生向学院组织的考核小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考核小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为导师），组成（尽量为参加过开题报告的专家）。考核小组对博士生论文写作工作进行认真审查，并将考评意见填入《中期考核表》。对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考核表》交各学院研究生科保存，以备检查。

（2）若中期考核没能通过者，在导师的指导下6个月后才能申请重新进行中期考核。2次考核不过者，应终止博士生学业。

（3）学位论文中期考核通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
导航、制导与控制学科 博士研究生培养方案

(专业代码：081105)

本学科是控制科学与工程一级学科下的二级学科。本学科与控制理论与控制工程、通信与信息科学、信号与信息处理、检测技术与自动化装置、模式识别与智能系统、电路与系统、机械电子工程等学科相互交叉、紧密联系，具有鲜明的多学科融合特色。本学科总体上处于国内先进水平，部分研究方向接近国际先进水平，在临近空间飞行器系统、空间信息传输、多模探测、导航定位技术与精确制导技术、复杂系统调度与控制、多飞行器协同控制与编队组网、系统仿真、测试、验证与故障诊断技术等研究方向取得了高水平研究成果。

一、培养目标

本学科紧密结合我国发展航空航天技术的需求，适应未来相关控制技术的发展趋势，以满足国家需求的空间控制工程为重点发展方向，培养具有坚实宽广理论基础以及创新思维能力的复合型高层次技术人才。

本学科博士学位获得者应具有严谨求实的科学态度和工作方法；具有控制科学与工程、航空宇航科学与技术、电子科学与技术、计算机科学与技术等方面宽广坚实的理论基础；具备系统深入的专业知识和深厚的数理基础；能够把握本学科国内外现状、前沿和发展趋势，并能独立从事相关领域的科学研究工作。要求在学科领域深入研究并取得独创性成果。

二、研究方向

1. 空天地一体化测控通信与导航定位技术
2. 空间系统运行控制与交通管理技术
3. 空间系统建模、仿真、验证及其故障诊断
4. 声、光、微波探测与精确制导技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于 2 学分。专业基础课中有“**”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程 2 学分，应在导师指导下学习。
五、课程设置

导航、制导与控制学科

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006005</td>
<td>高等数学分析</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006003</td>
<td>最优化理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>19017003</td>
<td>现代飞行器 GNC 理论</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19026001</td>
<td>现代测控通信技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>19017005</td>
<td>多智能体控制理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19017002</td>
<td>飞行器系统总体设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19017001</td>
<td>飞行力学及飞行控制</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td>1</td>
<td></td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 吴森堂，《飞行控制系统》北京航天航空大学出版社(2005-09 出版)
2. 刘兴堂、周自全、李为民等，《现代导航、制导与测控技术》，科学出版社(2010-03 出版)

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案。全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评分等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
 博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
 博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 （2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
 （3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
 （4）若开题报告未通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。
 （5）若因正当原因改变选题，须报上述要求重作开题报告。

・ 109 ・
（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作
期间应每2周一次向导师汇报研究进展。

3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院
的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其
中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参
加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》
，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研
究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评
不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，
发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统
的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论
文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把
好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月
至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细
则》的规定执行。
计算机科学与技术学科 博士研究生培养方案

（专业代码：081200）

电子科技大学“计算机科学与技术”一级学科包含 3 个二级学科，即计算机系统结构、计算机软件与理论、计算机应用技术。该一级学科于 1999 年建成一级学科博士后流动站，2002 年获得计算机科学与技术一级学科博士学位授予权。2007 年计算机应用技术学科入选国家重点学科（培育），2008 年计算机科学与技术入选四川省重点一级学科。经过“九五”、“十五”、“211 工程”和“985 工程”建设，本一级学科具备强有力的基础研究和应用研究能力，具有较强的学科综合优势。学科研究水平和研究能力大幅度提升，整体接近国内一流水平，部分研究方向达到国内先进水平。学科正处于一个良好的快速发展时期，在学科方向、学术团队、学科平台、科学研究、人才培养、学术交流等方面取得了突出的成绩。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，具有坚实的数学基础知识、系统的学科领域知识和精深的研究方向知识；学术视野开阔，学术思想活跃，创新意识强，了解学科现状、发展方向和前沿；能用英语撰写学术论文，能在国际学术会议上交流研究内容；能独立从事计算机领域内的基础理论和学科前沿课题的研究，能做出创新性的被国际认同的研究成果；可承担大型软件或重大计算机应用项目的开发；能胜任高等院校的教学工作。

二、研究方向

1. 分布式并行系统
2. 计算机网络与通信
3. 网络软件与操作系统
4. 新型计算机网络体系结构
5. 跨入式系统
6. 移动数据库技术与应用
7. 网络计算技术及应用
8. 数据库与数据挖掘
9. 自动推理与可信计算
10. 计算生物学
11. 形式化方法及其应用
12. 计算智能
13. 信息获取与处理的最优化技术
14. 复杂网络分析
15. 模式识别与智能机器人
16. 小波分析信息识别
17. 可穿戴计算技术
18. 中间件技术
19. 计算机图形学
20. 数字媒体技术
21. 云计算
22. 空间信息处理技术
23. 感知计算与智能交互

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。
四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必须，至少修一门基础课，二门以上专业基础课；必修环节不低于 2 学分。专业基础课中有“**”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

计算机科学与技术学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003 中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001 博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002 博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>基础课</td>
<td>06017014 组合设计与组合优化理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06016019 统计学习理论与应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>专业基础课</td>
<td>06016018 形式化方法</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20006027 高级网络计算</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>专业选修</td>
<td>06017005 神经网络理论与应用</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017006 实时计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017007 并行算法</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017008 虚拟现实技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017009 可信计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06067004 小波分析理论与应用</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017013 云计算</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017012 大数据分析与挖掘</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>其他选修课</td>
<td>13006003~13006005 第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16006004 马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006006 自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>必修环节</td>
<td>00006001 教学实践</td>
<td>二选一</td>
<td></td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006002 社会实践</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>00006003 学术活动（十次）</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
博士生自学本领域经典专著清单：
1. Tanenbaum Andrew S 等著，计算机网络（第 4 版），清华大学出版社（中文版），2005
2. George Coulouris 等著，分布式系统：概念与设计（第 4 版），机械工业出版社（中文版），2008
3. Abraham Silberschatz 等著，操作系统概念（第 7 版），高等教育出版社（影印版），2007
4. John E. Hopcroft 等著，自动机理论、语言和计算导论（第 3 版），机械工业出版社（中文版），2008
5. Matt Pharr 等著，Physically Based Rendering，Elsevier Science Ltd，2004

六、必修环节
博士学位研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。
3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 (1) 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 (2) 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 (3) 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 (4) 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。
4. 论文开题报告及文献综述读：博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。
七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展学位论文工作。

1、开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过1年后方能申请学位论文中期考评。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并参加开题报告的专家。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论
文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
生物医学工程学科 博士研究生培养方案

(专业代码：083100)

生物医学工程是现代科学技术与生物医学问题相结合的一个边缘领域。一方面它利用先进的科学技术和设备推动生物医学科研与实践的进步，另一方面又从生物医学研究中寻求新的工程与信息处理原理，推动相关科学与工程技术领域的发展，具有非常重要的桥梁作用。

我校本学科创办于1986年。现有院士1名，正副教授30余名。设有神经信息教育部重点实验室等三个部（省）重点实验室，拥有3T MR、EGI及Neuroscan脑电工作站等具有国际水平的实验仪器设备。在脑功能成像技术及应用、视觉神经电生理、生物医学信号处理、医学成像与处理、生物能量传递理论以及小麦育种等方面成果显著。

本学科与电子信息技术、计算机科学与技术、生物医学、认知神经科学和分子生物学等学科的研究领域密切相关。

一、培养目标

具备相应的电子信息技术与生物医学的坚实理论基础和系统深入的专门知识。本学科博士学位获得者应掌握有关领域的国内外前沿现状和发展趋势，具有独立从事学科领域中的基础理论及前沿课题的研究并作出创新的研究成果。至少熟练掌握一门外语；具有"读、写、听、说"能力。学位获得者应政治合格，热爱祖国，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 神经信息工程（EEG与fMRI数据处理、神经电生物、脑-机接口、神经科学仪器等）
2. 基因工程
3. 医学成像与图像处理
4. 内分泌生理学
5. 生物信息学与系统生物学
6. 基因表达调控与细胞信号传导
7. 分子神经生物学
8. 纳米生物学
9. 视觉认知与视觉图像分析

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课：必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相关学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

生物医学工程学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003 中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001 博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002 博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09036001 高级生物化学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067006 信息论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td>学位课</td>
<td>专业基础课</td>
<td>02017004 现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09016002 神经信息学基础</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09026005 现代分子生物学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位课</td>
<td>专业选修课</td>
<td>09017002 医学成像原理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09017005 生物医学信号处理</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09027001 生物物理学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09027003 发育遗传学</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09027006 基因组信息学</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09027007 Perl 生物信息学编程</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09017006 认知心理学</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09887001 学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003 第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004 马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>0006006 自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>0006001 教学实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0006002 社会实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0006003 学术活动（十次）</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0006004 论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0006005 博士生综合考试</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 奥本海姆，数字信号处理，科学出版社
2. [法]皮埃尔. 巴尔迪等著，张东晖等译，物信息学-机器学习方法，中信出版社
3. 邓兴旺等著，植物生物化学与分子生物学，科学出版社
4. 寿天德，视觉信息处理的脑机制（第 2 版），中国科学技术大学出版社
5. 罗跃嘉，认知神经科学教程，北京大学出版社
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题并开展学位论文工作。

1. 开题报告
 - 开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 - 开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题
报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成(尽量为参加过开题报告的专家)。考评小组对博士生论文工作进行认真审查，并将考评意见填写入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士研究生论文应在导师(或导师小组)的指导下，由博士研究生独立完成，且必须是一篇系统性的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位作学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
生物医学工程学科 博士研究生培养方案

（专业代码：107200）

生物医学工程是现代科学技术与生物医学相结合的一个交叉领域。结合学校的学科特点和临床资源优势，围绕信息科学与医学的交叉融合，综合运用医学理论与方法、先进的科学技术和设备推动生物医学科研与实践的进步，为学科发展与疾病预防、诊断及治疗服务。本学科与电子信息科学与技术、计算机科学与技术、生物学、医学以及认知神经科学等学科的研究领域密切相关。

主要研究领域包括：基因表达调控与细胞信号转导、疾病基因研究、胚胎发育与细胞信号调节、社会认知与情感神经学、医学成像与图像处理、临床医学生理与技术等。

一、培养目标

本学科博士学位获得者应具备坚实的信息科学与生物医学的理论基础和对所从事的研究方向及相关领域具有系统深入的专门知识，掌握相关领域的国内外前沿现状和发展趋势，具有独立从事学科领域中的基础理论及前沿课题的研究的能力。至少熟练掌握一门外语，具有较强的读写听说能力。学位获得者应具有良好的思想品德、能胜任在科研单位、高等院校以及医疗机构从事科学研究、教学和临床诊疗工作。

二、研究方向

1. 基因表达调控与细胞信号转导
2. 疾病基因研究
3. 胚胎发育与细胞信号调节
4. 社会认知与情感神经学
5. 医学成像与图像处理
6. 临床医学生理与医疗技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于 14 学分。学位课程要求不低于 8 学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课：必修环节不低于 2 学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课程中的自学课程 2 学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语写作</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>21016001</td>
<td>分子生物学与生物化学</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09026007</td>
<td>高级细胞生物学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>09017005</td>
<td>生物医学信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>09026006</td>
<td>生物力学与组织工程学</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位</td>
<td>21018001</td>
<td>疾病基因研究进展</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>21018002</td>
<td>小儿外科学进展</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21018003</td>
<td>干细胞基础及临床研究进展</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21016005</td>
<td>医学影像学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09027006</td>
<td>基因组信息学</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>09027003</td>
<td>发育遗传学</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21017001</td>
<td>学科前沿知识讲座</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>13006003~</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>学位选修</td>
<td>13006005</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修</td>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
2. 王果. 儿外科科学（卫生部十一五规划教材）. 人民卫生出版社，2009
3. 肖现民. 临床小儿外科学—新进展、新理论、新技术. 复旦大学出版社，2007

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容:
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题
考、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。

社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会实践，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应在入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士学位论文的选题应对科技和社会发展具有重要的理论意义或实用价值。博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告未能通过，在导师的指导下 3 个月后才能重新开题。2 次开题报告不过者，
应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过1年后方能申请学位论文中期考评。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
软件工程学科 博士研究生培养方案

（专业代码：083500）

软件工程学科是信息技术领域中发展最快的学科领域之一，软件产业也成为各国经济发展的支柱产业。软件工程领域总体发展形成了宽范围、多维度、多层次、多交叉的体系结构，知识领域包括软件需求、软件设计、软件构建、软件测试、软件维护、软件配置管理、软件项目管理、软件工程工具与方法、软件质量、软件安全、软件道德与法律等；也涉及到系统工程、领域工程、数字化技术、嵌入式系统、网络与信息安全，系统管理与支持、市场营销等多学科交叉领域。

一、培养目标

本学科以培养掌握软件工程基本理论，根据软件技术的发展和软件行业的需求，面向软件工程领域的高层次人才。

本学科博士学位获得者应热爱祖国和人民，具有坚实的数学基础知识、系统的学科领域知识和精深的研究方向知识；学术视野开阔，学术思想活跃，创新意识强，了解学科现状、发展方向和前沿；能用英语撰写学术论文，能在国际学术会议上交流研究内容；能独立从事软件领域内基础理论和学科前沿课题的研究，能做出创新性的被国际认同的研究成果；可承担大型软件或重大软件应用项目的设计和开发；能胜任高等院校的教学工作。

二、研究方向

1. 软件理论与技术
2. 网络工程与应用
3. 嵌入式软件技术与应用
4. 数字信息处理技术

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

软件工程学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>基础课</td>
<td>06016018</td>
<td>形式化方法</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20006027</td>
<td>高级网络计算</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
</tr>
<tr>
<td></td>
<td>专业基础课</td>
<td>06016005</td>
<td>神经网络理论与应用</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06016006</td>
<td>实时计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017001</td>
<td>并行计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017002</td>
<td>虚拟现实技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017009</td>
<td>可信计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06067004</td>
<td>小波分析理论与应用</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06017012</td>
<td>大数据分析与挖掘</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>专业选修课</td>
<td>13005003~13005006</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>其他选修课</td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. Tanenbaum.Andrew S 等著，计算机网络(第 4 版)，清华大学出版社(中文版)，2005
2. George Coulouris 等著，分布式系统:概念与设计(第 4 版)，机械工业出版社(中文版)，2008
3. Abraham silberschatz 等著，操作系统概念（第 7 版），高等教育出版社（影印版），2007
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告未能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中侧考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
管理科学与工程学科 博士研究生培养方案
（专业代码：120100）

信息管理与电子商务学科 博士研究生培养方案
（专业代码：120121）

管理科学与工程学科属管理学学科门类中一级学科。我校管理科学与工程学科主要研究管理科学方法与技术、管理经济与产业组织理论、企业理论与企业战略以及金融投资与金融工程等，是部级重点学科并拥有部级重点实验室，已完成和正承担10余项国家自然科学基金项目（包括一项国家杰出青年基金项目及其延续项目）和数十项部省级科研项目，取得了包括国家科技进步三等奖在内的一批高水平科研成果，在国内外学术刊物和国际学术会议发表论文数百篇，形成了以中国青年科学家奖获得者为学术带头人的高素质、年轻化学术队伍。

一、培养目标

本学科博士学位获得者应具有扎实的数理基础、管理科学与工程和经济与金融科学方面宽广坚实的理论基础以及系统深入的专业知识，并掌握系统理论与系统工程的基础知识，熟悉计算机系统和网络技术的应用现状，深入了解和掌握本学科国内外现状、前沿和发展趋势，具有独立从事本学科领域中的基础理论及前沿课题的研究能力，并有创新的研究成果，能胜任高等院校、企业、政府产业和市场监管部门的教学和科研、高级管理和产业规划等工作。

学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 信息管理与电子商务
2. 供应链与物流管理
3. 决策理论方法与应用
4. 质量管理与可靠性工程

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>级 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方 式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共 基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业 基础课</td>
<td>11026006</td>
<td>经济理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11026007</td>
<td>金融理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11026009</td>
<td>管理科学理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11026008</td>
<td>企业管理理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业 选修课</td>
<td>11028001</td>
<td>服务管理研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>文献阅 读+报 告+课 程论文</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11028002</td>
<td>电子商务和供应链管理研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>文献阅 读+报 告+课 程论文</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11028003</td>
<td>数据挖掘与信息管理研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>文献阅 读+报 告+课 程论文</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11028004</td>
<td>产业组织理论研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>文献阅 读+报 告+课 程论文</td>
<td></td>
</tr>
<tr>
<td>其它 选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td>选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td>选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
3、Anthony Saunders,Credit Risk Meaurement:New Approaches to Value at Risk and Other Paradigms, John Wiley & Sons,1999
5、Peter Druker. 21世纪的管理挑战 三联书店出版社 2003
6、杰里米.夏皮罗(美). 供应链建模（Modeling the Supply Chain）. 中信出版社
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于40学时，由导师给出评
 语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在
 学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管
 理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的
 国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相
 应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题和开展学位论文工作。

1. 开题报告
 (1) 开题报告的时间。博士生在确定选题, 大量阅读文献的基础上, 一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 (2) 开题报告的方式。开题报告应以报告会的形式, 在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师), 并作出考评意见。
 (3) 开题报告的内容。依据《开题报告表》的要求, 作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
 (4) 若开题报告未能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者, 应终止博士生学业（退学处理）。
 (5) 若因正当原因改变选题，须按上述要求重新开题报告。
 (6) 论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评
(1) 学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
(2) 若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。
(3) 学位论文中期考评通过 1 年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者, 发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，并具有系统性的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
金融工程学科 博士研究生培养方案
（专业代码：1201Z1）

金融工程学科是金融学、信息技术和工程方法等交叉的新兴学科，它以现代金融学、管理科学、经济学、数学、法学和各种工程技术方法为基础，设计、开发和实施新型的金融产品和技术，创造性地解决金融问题。电子科技大学的金融工程研究和学科方向在国内具有不可忽视的重要地位，在本学科研究领域获得了23项国家级和省部级科研项目的支持，在重要学术期刊上发表论文150余篇，形成了一支高素质、年轻化学术队伍。我校在该学科领域已有的学科地位、在电子信息领域独特的学科综合优势以及实务界迫切的人才需求表明，我校的金融工程学科具有广阔的发展前景。

一、培养目标

本学科博士学位获得者应具有扎实的数理基础，掌握金融工程学科的前沿理论和方法发展动态；具有从事金融工程学科的基础理论和前沿课题的研究能力，并提供创新的科学研究成果；能够开发、设计、综合运用各种金融工具和手段，创造性地分析和解决金融实务问题；具有较高的外语水平和计算机运用能力，能胜任高等院校科研与教学、金融产品开发、金融监管部门管理等工作。
学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 投资管理与交易策略
2. 金融衍生品
3. 金融机构及其风险管理
4. 金融市场计量经济分析

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少修一门基础课，二门以上专业基础课；必修环节不低于2学分。专业基础课中有“*”标志的为全校共选专业基础课。允许相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。
学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。
研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，由导师根据其研究方向和学生入学前教育背景至少指定2本经典著作，并在导师指导下学习。
五、课程设置

金融工程学科 博士研究生课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>11026006</td>
<td>经济理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>11026007</td>
<td>金融理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>11026009</td>
<td>管理科学理论（二选一）</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>11026008</td>
<td>企业管理理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>11078001</td>
<td>实证金融专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>文献阅</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>11078002</td>
<td>信用风险研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>读+报</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>11078003</td>
<td>固定收益证券与资产证券化专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>告+课</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>11078004</td>
<td>资产定价与投资管理专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>程论文</td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>13005003~13005006</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
4. Anthony Saunders,Credit Risk Meaurement:New Approaches to Value at Risk and Other Paradigms,John Wiley & Sons,1999

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于40学时，由导师给出评
 语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在
 学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对研究方向和相关领域前沿动态的掌握程度。
 (1) 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 (2) 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 (3) 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于50%。
 (4) 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理
 科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应
 的开题报告。

七、学位论文

（一）博士学位论文的基本要求
 博士学位论文的选题应属学科前沿或对科技和社会发展有重要的理论意义或实用价值。学位
 论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究
 工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
 博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 (1) 开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期末之前，最迟应在第四学期期末之前完成开题报告。
 (2) 开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行。开题
 报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以
 是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。
 (3) 开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完
 成《开题报告表》，交学院研究生科保存，以备检查。

• 135 •
（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
工商管理学科 博士研究生培养方案

（专业代码：120202）

工商管理是我校一级学科博士点，是省级重点学科，涵盖了企业管理、技术经济及管理等二级学科博士点，我校工商管理学科主要研究企业理论、战略管理、组织与人力资源管理、新兴技术与创新管理以及市场营销等领域。已完成和正承担20余项国家级或省部级科研项目，取得了一批高水平的科研成果，在国内外重要学术刊物和国际学术会议上发表论文数百篇。本学科现有博士生导师16人，教授17人，副教授31人，有十余位教师曾在海外著名高校留学或从事访问研究，与海外著名大学建立了密切联系和合作。设置有战略管理研究所、组织与人力资源研究所、新兴技术管理研究所、创新与创业研究所、市场营销研究所、经济管理专业实验室等专业研究机构，具有良好的研究条件和浓厚的学术氛围。

一、培养目标

工商管理学科以营利组织的经营活动规律及其管理实践作为研究对象，要求博士学位获得者应具有扎实的数理基础，系统掌握案例研究、调查研究、实验研究等科学研究方法和学术规范，掌握计划、组织、控制和领导企业的专业知识，具备战略决策、组织行为、人力资源管理、营销、财务、会计等方面宽广坚实的理论基础以及系统深入的专业知识，熟悉和掌握本领域方向国内外研究现状、前沿和发展趋势，具有独立从事本学科领域中的基础理论及前沿课题的研究能力，并形成创新的研究成果，能胜任企业、政府、高等院校或市场研究部门的管理、教学、科研或产业规划等工作。

学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 战略管理
2. 组织与人力资源管理
3. 公司金融与资本市场
4. 供应链与物流管理
5. 服务管理
6. 营销管理
7. 创新创业管理
8. 新兴技术管理

三、培养方式和学习年限

全日制博士研究生学制为四年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不超过六年。

四、学分要求与课程学习要求

总学分要求不低于14学分。学位课程要求不低于8学分，其中公共基础课必修，至少选一门基础课，二门以上专业基础课：必修环节不低于2学分。专业基础课中有“*”标志的为全校公选专业基础课。允许相同学科门类之间，工科与理科之间跨学科选修2门学位课作为本学科的学位课。

学位课可替代非学位课，但非学位课不能替代学位课。硕士阶段已学过的硕博共选课程不能在博士阶段重复计算学分。

研究生应在导师指导下制定个人培养计划和具体选课。非学位课中的自学课程2学分，应在导
师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002</td>
<td>博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>11026006</td>
<td>经济理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>11026007</td>
<td>金融理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11026009</td>
<td>管理科学理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11026008</td>
<td>企业管理理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>11038001</td>
<td>公司财务研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>文献阅</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11038002</td>
<td>战略管理研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>报告+课程</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11038003</td>
<td>组织行为研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11038004</td>
<td>营销管理研究专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11038005</td>
<td>新兴技术管理专题</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>其它选修课</td>
<td>13006003</td>
<td>第二外语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td>选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>1</td>
<td>公共</td>
<td></td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
1. 艾尔弗德·钱德勒著. 看的见的手-美国企业的管理革命. 北京：商务印书馆, 1994 年
2. 弗莱蒙特·卡斯特, 罗森斯韦克著. 组织与管理: 系统方法与权变方法（第四版）. 北京：中国社会科学出版社, 2000 年
3. 《哈佛商业评论》精粹译丛系列. 北京：中国人民大学出版社, 2005 年
4. 赫伯特·西蒙著. 管理行为（第四版）. 北京：机械工业出版社, 2004 年
5. 亨利·明茨伯格著. 国外经济管理名著丛书：经理人员的职能. 北京：中国社会科学出版社, 2000 年
6. 李怀祖著. 管理研究方法（第 2 版）. 西安：西安交通大学出版社, 2004 年
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出发言证明，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

25、马可.伊恩斯蒂等. 高新技术产业管理. 《哈佛商业评论精粹译丛》. 北京: 中国人民大学出版社, 2002
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成。导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。
3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
马克思主义基本原理学科 博士研究生（直博生）培养方案

（专业代码：030501）

马克思主义基本原理，是马克思主义科学体系的基本理论、基本范畴，是其立场、观点和方法的理论表达。马克思主义基本原理学科，旨在研究马克思主义主要经典著作和基本原理，从整体上研究和把握马克思主义科学体系，并运用马克思主义立场、观点和方法来分析和研究现实问题、认识世界和社会主义发展中的问题。马克思主义基本原理的研究和教育，对马克思主义进行深入系统的研究，对党员干部和青年学生进行马克思主义理论教育具有重要意义。承担该学科博士生培养任务的马克思主义教育学院在马克思主义理论方面有很强的研究与教学实力，1997 年曾获国家级教学成果一等奖，2005 年获国家教学成果二等奖。

一、培养目标

本学科博士学位培养具有坚定的马克思主义信仰和社会主义信念，有深厚的马克思主义理论功底和专业基础知识，能够较好地运用马克思主义立场、观点和方法研究和分析现实社会问题，具有较强的研究能力和一定的创新能力的高层次专业人才。

二、研究方向

1. 马克思主义与当代经济社会发展研究
2. 马克思主义理论教育规律和方法研究
3. 马克思主义经典著作和基本原理研究
4. 马克思主义与当代社会思潮研究

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。
五、课程设置

马克思主义基本原理学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>16017004</td>
<td>马克思主义经典著作研究</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16036002</td>
<td>中外政治思想史专题研究</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16017002</td>
<td>中国化马克思主义专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16027003</td>
<td>现代思想政治教育学专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16017008</td>
<td>马克思主义发展史专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16035001</td>
<td>政治学专题研究</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16036004</td>
<td>国际政治与国内政治专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16026001</td>
<td>思想政治教育统计研究方法论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16036003</td>
<td>宪政理论与实践专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16005005</td>
<td>自然辩证法</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位</td>
<td>13006003~</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>13006005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16060004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 马克思、恩格斯全集 1~4 卷
2. 列宁选集 1~4 卷
3. 马克思《资本论》
4. 马克思、恩格斯《共产党宣言》
5. 恩格斯《反杜林论》
6. 列宁《唯物主义和经验批判主义》
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二者选一，完成后获得1个学分。

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。

 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，终止学业。

 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于50%。

 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管
 理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位
论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究
工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学
期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
思想政治教育学科 博士研究生（直博生）培养方案

（专业代码：030505）

思想政治教育是运用马克思主义理论与方法，专门研究人们思想品德形成、发展和思想政治教育规律，培养人们正确世界观、人生观、价值观的学科。思想政治教育在我国革命和社会主义现代化建设中，发挥着“生命线”和“中心环节”的作用，积累了丰富的实践经验和技术成果，是我们党和社会主义国家的优良传统和政治优势。思想政治教育学科以马克思主义为理论指导，以党的思想政治工作为实践基础，经过20多年的学科建设，在思想政治教育的性质、规律、功能、内容、方法研究，中国共产党思想政治工作史与基本经验研究，马克思主义理论教育研究等方面取得了丰硕成果。我校思想政治教育学科以思想政治教育定性与定量结合的研究特色为依托，以本校雄厚的电子科技实力为背景，在思想政治教育统计研究与质性研究方面居全国前列，在网络思想政治教育研究方面也极具竞争力。在新的历史条件下，本学科面临着拓展学科领域、丰富学科内涵、增强学科特色、提高学科水平的建设任务。

一、培养目标

本专业培养具有坚实理论基础和系统专业知识、德智体全面发展的高层次人才。具体要求是：具有坚定的马克思主义信仰和社会主义信念；系统掌握马克思主义基本原理和中国化马克思主义理论；全面掌握思想政治教育的理论、方法与教育对象的特点，把握人们思想品德形成、发展的规律；具有针对思想政治教育理论与实践问题采用哲学方法、质性方法、量化方法予以高水平研究的能力；具有较强分析、解决人们思想问题与实际问题的能力；具有学科信息处理、学术交流与较强的文字、口头表达能力；掌握一门外国语并能熟练地阅读本专业的外文资料和进行本学科的学术交流；掌握本学科的前沿研究动态与最新成果；能胜任与本学科相关的教学、科研和党政、社团、学生教育管理工作。

二、研究方向

1. 思想政治教育的基本理论和方法论研究
2. 思想政治教育创新与发展研究
3. 新时期世界观、人生观、价值观教育研究
4. 大学生思想政治教育与管理工作研究

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同或相近学科之间、工科与理科之间跨学科选修1～2门学位课程作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。
研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>1606003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>16017004</td>
<td>马克思主义经典著作研究</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16017002</td>
<td>中国化马克思主义专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16027003</td>
<td>现代思想政治教育学专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16017008</td>
<td>马克思主义发展史专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16036002</td>
<td>中外政治思想史专题研究</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16017002</td>
<td>中国化马克思主义专题研究</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>16035001</td>
<td>政治学专题研究</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16036004</td>
<td>国际政治与国内政治专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16026001</td>
<td>思想政治教育统计研究方法论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16036003</td>
<td>宪政理论与实践专题研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16005005</td>
<td>自然辩证法</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1606004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科专业课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 张耀灿、郑永廷 《现代思想政治教育学》 人民出版社，2006
2. 郑永廷、胡树祥 《思想政治教育方法论》高等教育出版社，1999
博士研究生培养方案

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
思想政治教育学科 博士研究生（直博生）培养方案

博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。

（2）博士生综合考试由学位评定委员会指定三名专家组成的考试委员会负责实施。考试委员会主任必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文是本学科前沿或对科技和社会发展具有重要理论意义或实用价值的学位论文。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告未通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过 1 年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考核小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考核小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参
加开题报告的专家。考评小组对博士生论文工作进行认真审查，并将考评意见填写入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
凝聚态物理学科 博士研究生（直博生）培养方案

（专业代码：070205）

凝聚态物理学是物理学中最为庞大和发展最为迅速的一个分支，它主要研究凝聚态物质的力、热、电、磁、光等物理性质，以及微观结构、运动状态及其相互关系和变化规律。它不仅为材料科学、电子学、光电子学和生命科学等学科提供理论基础和研究方法，而且成为固体电子和光电子技术、固态激光器和新型高功能材料等高技术发展和创新的源泉。我校凝聚态物理学科具有自身的特色，并依托强大的电子科学与技术学科的支撑，具有很好的发展前景。

本学科的主要研究方向有纳米结构、相变及其辐射效应、光电材料与光谱学、计算凝聚态物理等。本学科的交叉学科有光学、材料物理与化学、微电子与固体电子学等，以上学科我校均有博士点和硕士点，其中光学为教育部重点学科。

一、培养目标

本学科博士学位获得者应掌握系统宽广的凝聚态物理学和相关学科的理论知识，具有坚实的数理基础和必要的计算机应用能力；具有较强的分析和解决问题的能力以及独立从事科研工作的能力；熟练掌握一门外语，具有较强的读写能力和必要的听说能力；对本学科的某一领域有深入的研究，并有创造性和系统性的研究成果；具有严谨求实的工作作风和团队协作精神；能独立胜任高等院校和科研机构的教学、科研、管理工作或产业部门的技术和管理工作。

二、研究方向

1. 纳米材料与结构
2. 相变及辐射效应
3. 新型功能材料与光谱学
4. 计算凝聚态物理
5. 合金材料与金属物理
6. 材料结构与热物性
7. 理论物理
8. 半导体物理学
9. 功能材料与光学
10. 光电子学
11. 计算材料科学
12. 原子与分子物理
13. 凝聚态物理学
14. 材料物理和化学
15. 固体电子学

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“**”标志的全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003 中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001 博士生英语阅读</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006002 博士生英语听写</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002 数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001 高等量子力学</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066002 相变物理*</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066006 高等固体理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017001 高等光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10005004 数学物理方程与特殊函数</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008 应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036001 材料物理学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017004 纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017001 半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>03037001 材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066003 固体波谱学</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04047003 微电子结构光学测试技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001 学科前沿专题讲座（凝聚态物理）</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~13006005 第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1，2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600604 马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006 自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选课</td>
<td>专业选修课</td>
<td>00006001 教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002 社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003 学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004 论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005 博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 金国钧, 冯端, 凝聚态物理新论, 上海, 上海科技出版社, 1992
2. 冯端, 金属物理学, 第一卷 结构与缺陷, 北京, 科学出版社, 2000
3. 冯端, 金属物理学, 第二卷 相变, 北京, 科学出版社, 2000
4. 李正中, 固体理论, 北京, 高教出版社, 1991
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题
 课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报
 所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管
 理科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
 （1）开题报告的选题。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 （2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
 （3）开题报告的内容。依据《开题报告表》的要求，作开题报告。开题报告应以报告会的形式，在学院的学术交流论坛公开举行，具有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
 （4）若开题报告没能通过，由导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
 （5）若因正当原因改变选题，须按上述要求重做开题报告。
 （6）论文开题通过1年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。
3. 中期考评
 （1）学位论文开题一年后，博士生向学院组织的考核小组作论文工作进展报告（在学院的学术交流论坛公开举行），考核小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）参加。（尽量为参加过开题报告的专家）考核小组对博士生论文工作进行认真审查，并将考核意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
 （2）若中期考评没能通过者，由导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
 （3）学位论文中期考试通过1年后方能申请学位论文答辩。
4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
光学学科 博士研究生（直博生）培养方案

（专业代码：070207）

光学是研究光（从微波直至χ射线及γ射线）的产生、传播、探测、变换以及与物质的相互作用原理、技术及应用的一门学科。光学是物理学的一个重要分支，是一门经典而又充满活力的学科。它是现代科学基础研究、尖端技术、以及新兴产业的重要原动力。相对论及量子力学的建立，激光的发明及应用，光纤通信产业的崛起等等 20 世纪最伟大的科技成就，无不得益于光学的促进与推动。在 21 世纪，光学将向着更为广泛的领域发展和渗透，成为物理学以及信息、生命、材料、能源等科学与技术的主要基石之一。

一、培养目标

本专业培养的博士生应在本学科内掌握坚实宽广的基础理论、系统深入的专门知识以及相应的实验技能，具有良好的科学素养和独立从事光学及相关领域科研、开发和教学工作的能力，能在科学或专门技术上做出创造性的成果。具有严谨的科学态度和工作作风。能熟练地运用计算机和一门外国语。德智体全面发展，身心健康。

二、研究方向

1. 量子光学
2. 光电子材料及其与强激光的相互作用
3. 激光与等离子体的相互作用
4. 太赫兹物理与技术
5. 微波光电子学
6. 空间光通信与激光雷达
7. 亚波长光学

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。
光学学科 博士研究生（直博生）课程设置

五、课程设置

光学学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>公共基础课</td>
<td>16006003 中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007 直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008 直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>应用数学理论与方法</td>
<td>20006008</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001 高等量子力学</td>
<td></td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007 直博生英语听说与写作</td>
<td>13006007</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008 直博生英语阅读与翻译</td>
<td>13006008</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027001 非线性理论和方法</td>
<td></td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017001 高等光学</td>
<td></td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006002 高等电磁场理论</td>
<td></td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04046004 现代光学</td>
<td></td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04046005 光通信与光电系统</td>
<td></td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006003 中国马克思主义与当代</td>
<td></td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007 直博生英语听说与写作</td>
<td>13006007</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008 直博生英语阅读与翻译</td>
<td>13006008</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027001 非线性理论和方法</td>
<td></td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017001 高等光学</td>
<td></td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006002 高等电磁场理论</td>
<td></td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04046004 现代光学</td>
<td></td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04046005 光通信与光电系统</td>
<td></td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0407001 亚波长光学</td>
<td></td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0407002 光学系统设计</td>
<td></td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0407003 粒子模拟理论与方法</td>
<td></td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0407004 微电子结构光学测试技术</td>
<td></td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001 学科前沿专题讲座</td>
<td></td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003 第二外国语（日语、德语、法语）</td>
<td></td>
<td>80</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004 马克思主义经典著作选读</td>
<td></td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009 博士生学术英语交流</td>
<td></td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006 自学课程</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>其他选修课</td>
<td>00006001 教学实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002 社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003 学术活动（十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004 论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005 博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
1. <Optics> Ajoy Ghatak 2003
2. <Principles of Optics> Max Born and Emil wolf
5. < Optical Electronics in Modern Communications >, Amnon Yariv, USA. Oxford, 1997
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给出书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家学者担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 （4）各学科根据实际情况每年举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期末之前完成开题报告。
光学学科 博士研究生（直博生）培养方案

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至多须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

3．论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3．中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》。对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4．发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5．学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
无线电物理学科 博士研究生（直博生）培养方案

（专业代码：070208）

无线电物理学科采用近代物理学和电子信息科学技术的基本理论、方法及实验手段，研究电磁场和波及其与物质相互作用的基本规律，据以开发新型的电子器件和系统，发展信息传输和处理的新理论、新方法和新技术，并在电子信息系统中推广应用。在电子信息领域，现代通信、雷达、遥感、微电子、材料、生物和医疗等高新技术的重大技术进展都离不开无线电物理的突破。无线电物理已经成为国民经济、社会建设以及国防建设的诸多方面，成为一个对电子信息领域及其相关学科、相关产业的发展具有举足轻重作用的重要学科。

一、培养目标

本专业培养的博士生应在本学科内掌握坚实宽广的基础理论、系统深入的专门知识以及相应的实验技能，具有良好的科学素养和独立从事无线电物理及相关领域科研、开发和教学工作的能力，在科学或专门技术上做出创造性的成果。具有严谨的科学态度和工作作风，能熟练地运用计算机和一门外国语。德智体全面发展，身心健康。

二、研究方向

1. 微波理论与技术
2. 计算电磁学及其应用
3. 微波毫米波电路与系统
4. 超宽带电磁学及其应用
5. 天线与波传播
6. 微波光电子学及其应用
7. 电磁兼容
8. 信号完整性研究
9. 新型人工电磁媒质

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

无线电物理学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>学位</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04036008</td>
<td>电子工程数值分析基础</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04036009</td>
<td>电子工程优化理论与方法（一）</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037005</td>
<td>电子工程优化理论与方法（二）</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037006</td>
<td>电磁场中的随机场与随机媒质</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04036004</td>
<td>超宽带电磁学及其应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037003</td>
<td>瞬态地球电磁学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04037005</td>
<td>微波电路与系统</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04047001</td>
<td>亚波长光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006005</td>
<td>计算电磁学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006002</td>
<td>高等电磁场理论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003-13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>教学实践</td>
<td>2</td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>2</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td>2</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 （4）各学科根据实际情况每年举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技进步和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或技术上做出创造性的成果。

（二）学位论文工作
博士学位论文的选题应属学科前沿或对科技进步和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应属学科前沿或对科技进步和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文的选题应属学科前沿或对科技进步和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或技术上做出创造性的成果。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
光学工程学科 博士研究生（直博生）培养方案

（专业代码：080300）

光学工程学科主要研究光信息获取、光存储、光传输、光交换、光信息处理，以及光电图像显示等方向领域。该学科在军事及民用领域有广泛的应用，是当今信息产业的重要支柱学科之一。

我校光学工程主要从事覆盖整个光学工程学科的理论及其相关应用方面的教学与科研，特别在光通信、集成光学与光电子产品、红外与传感技术、平板显示与成像技术等方面具有特色和优势，该学科承担了多项国家重点科研项目，科研经费充裕，且获得国家及部省级科研成果奖多项。该学科主要研究方向在国内处于前列，在国际上也有一定影响。

一、培养目标

光学工程学科培育者应具有坚实的数学物理基础知识、系统的学科领域知识和精深的研究方向知识；学术视野开阔，学术思想活跃，创新意识强，了解光学工程学科现状、发展方向和前沿；具有严谨求实的科学态度和工作作风；能用英语撰写学术论文，能在国际学术会议上交流研究成果；能独立从事光学工程学科的基础理论和学科前沿课题的研究，能做出创新性的被国际认同的研究成果；能胜任光学、光电子学等相关领域的项目研发及高等院校的教学工作。

二、研究方向

1. 光通信与集成光学
2. 激光技术及应用
3. 光电探测与系统集成
4. 显示与成像
5. 微波光学
6. 真空电子学
7. 微纳光学
8. 光电测控与仪器
9. 光伏能
10. 敏感电子学与传感网
11. 光纤传感
12. 生物光学

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课，三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习。
<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006001</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10005004</td>
<td>数学物理方程与特殊函数</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006005</td>
<td>高等数值分析</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006002</td>
<td>高等电磁场理论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位课</td>
<td>20005004</td>
<td>*光波导理论与技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006012</td>
<td>*激光物理</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20007002</td>
<td>*非线性光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td>专业基础课</td>
<td>05015002</td>
<td>光学原理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04046004</td>
<td>现代光学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05015003</td>
<td>半导体光电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05015005</td>
<td>敏感材料与传感器</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05015010</td>
<td>光电信息检测</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05015012</td>
<td>光电薄膜材料与技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017002</td>
<td>光电成像导论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05017013</td>
<td>光探测原理与技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td>硕博共选</td>
</tr>
<tr>
<td></td>
<td>01046009</td>
<td>高等光学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01046004</td>
<td>光电器件理论与技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>20006015</td>
<td>图像处理及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016012</td>
<td>光纤通信技术</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016013</td>
<td>纳米材料与器件</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016014</td>
<td>液晶光电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016017</td>
<td>平板显示驱动技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016018</td>
<td>薄膜晶体管原理与技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016019</td>
<td>大气光学和空间光信息系</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016020</td>
<td>光声检测与声光信息处理技术</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016021</td>
<td>光纤光学</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016023</td>
<td>有机光电材料与器件</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05016022</td>
<td>纳米光子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>课程号</td>
<td>课程名称</td>
<td>学分数</td>
<td>学时</td>
<td>选修情况</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05017005</td>
<td>显示技术导论</td>
<td>40</td>
<td>2</td>
<td>硕博共选</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05017009</td>
<td>微传感器原理与技术</td>
<td>40</td>
<td>2</td>
<td>硕博共选</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05017010</td>
<td>光通信器件与技术</td>
<td>20</td>
<td>1</td>
<td>硕博共选</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05017011</td>
<td>红外与传感技术</td>
<td>20</td>
<td>1</td>
<td>硕博共选</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05017012</td>
<td>量子光学</td>
<td>40</td>
<td>2</td>
<td>硕博共选</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01046001</td>
<td>光网络及其控制技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01046008</td>
<td>光调制与处理技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01047005</td>
<td>光纤传感技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03037001</td>
<td>材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13005003~13005006</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td>公共选修</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
4. 黄维，密保秀，高志强 著，有机电子学，科学出版社，2011年

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等，工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在
学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应在入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时在《开题报告表》、交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
光学工程学科 博士研究生（直博生）培养方案

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每周向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
仪器科学与技术学科 博士研究生（直博生）培养方案

（专业代码：080400）

仪器科学与技术是信息领域的重要组成部分，其主要研究内容包括：信号或信息的获取方法及转换放大与处理技术、测量方法学、计量学以及仪器工程学与测控系统工程学。仪器科学与技术学科具有自身可持续发展的优势，具有突出的学科交叉性和科技前沿性等显著的特点，对高新科技与工业的发展和社会进步具有重要的引领作用和推动作用。

我校仪器科学与技术学科源于学校 1956 年创办的“电子测量技术及仪器”专业，是国内电子测量技术高层次人才培养基地之一。拥有一级学科博士点、博士后流动站，是四川省一级学科重点学科。

学科教学科研实力雄厚，在多年的发展和建设中，形成了宽带时域测试技术及仪器、电子系统综合测试诊断与预测、微波与通信测试技术及仪器、集成电路测试与可测性设计理论及技术等研究方向，具有显著的电子测试优势和鲜明的军事电子特色，工程研究能力突出。

一、培养目标

本学科博士学位获得者应在仪器科学与技术学科的研究领域中具有坚实宽广的基础理论和系统深入的专门知识；能够深入了解本学科某一方向的发展现状及国际科学与技术前沿；能够从事高水平的理论和实验研究，并在某一方面取得创造性的研究成果；具有很强的独立从事科学研究和技术开发的能力，有严谨求实的科学作风；至少熟练地掌握一门外国语，能熟练地阅读本专业的外文资料，具有一定的外语写作能力和进行国际学术交流的能力；能作为高层次人才胜任本学科或相近学科的科研、教学、工程开发或技术管理工作。

二、研究方向

1. 宽带时域测试技术及仪器
2. 电子系统综合测试诊断与预测
3. 微波毫米波测试技术及遥感
4. 集成电路测试与可测性设计理论及技术
5. 新型传感技术与精密测量

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中应有“*”标志的为全校共选专业基础课。允许在相同一级学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。
五、课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博研究生听说</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博研究生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>20005001</td>
<td>随机过程及应用</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>07017001</td>
<td>现代信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017002</td>
<td>集成电路诊断测试与可测性设计技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017007</td>
<td>电子系统故障预测与健康管理技术</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017004</td>
<td>微波测量</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07015001</td>
<td>计量方法与误差理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>07017003</td>
<td>计算智能理论与方法</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017006</td>
<td>现代频域测试</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07037001</td>
<td>现代检测技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07015005</td>
<td>射频电路设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07015006</td>
<td>EMC测试技术</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07015011</td>
<td>现代时域测试</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07015013</td>
<td>精密测试</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
中文翻译版：蒋安平 等.《超大规模集成电路测试：数字、存储器和混合信号系统》. 电子工业出版社. 2004

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得1个学分。

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等，工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。

 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。

 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。

 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学
期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式。在学院的学术交流论坛公开举行；开题
报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以
是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完
成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，
应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过 1 年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作
期间应每 2 周一次向导师汇报研究进展。
3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院
的学术交流论坛公开举行），考评小组至少由本学科及相近学科的 3 位专家组成，导师可以作为其
中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参
加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评
表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院
研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评
不过者，应终止博士生学业。
（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。
4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，
发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统
的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论
文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把
好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月
至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细
则》的规定执行。
材料科学与工程学科 博士研究生（直博生）培养方案

（专业代码：080500）

“材料科学与工程”是主要研究材料的组成、结构、制备工艺与其性能及使用过程间相互关系的科学与技术，主要研究电、磁、声、光、热、力及生物等功能材料及应用的理论、设计、制备、检测等，涉及到信息的获取、转换、存储、处理与控制等。它包括“材料学”和“材料物理与化学”两个二级学科。

随着科学技术的发展，本学科与其它学科的交叉越来越紧密，如微电子学与固体电子学、电子科学与技术、信息与通信工程、计算机科学与技术、控制科学与工程、仪器科学与技术、生物医学等。我校是国家“211”工程重点建设学科，特色和优势在于对电子信息材料及应用的研究和开发。本学科现有博士生导师5名，教授18名和一批由年轻博士为梯队的学术队伍，拥有先进的实验设备和充足的科研经费。

作为当代文明的重要支柱，本学科已成为现代科学技术发展的先导和基础，与整个社会的发展有着极为密切的依存关系。

一、培养目标

本学科定位于培养在材料科学与工程领域，特别是电子信息材料的物理与化学方面具备坚实的基础理论，系统的专业知识，掌握必要的电子科学、计算机应用及材料的微观结构分析和宏观特性测试技术的人才。培养在材料科学与工程领域掌握坚实的理论基础和系统的专门知识、熟悉各种新型材料的研制、加工和测试分析技术，具有熟练的计算机技能和外语水平，能从事材料科学与工程研究、教学工作或工程技术与工程管理的高级人才。

本学科博士学位获得者应：政治合格、热爱祖国、热爱人民、献身伟大祖国的社会主义现代化建设事业；学风正派、工作严谨求实，善于与人团结共事；能胜任本专业的科研、教学、产业部门的技术工作、或以上领域的技术管理工作等。

二、研究方向

1. 电子材料与工程
2. 磁性材料与工程
3. 半导体材料及器件
4. 材料化学与工程
5. 纳米及低维结构材料与器件
6. 电子薄膜与集成器件
7. 材料分析表征
8. 有机电子材料与工程
9. 能源材料

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修
环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校公选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习。

五、课程设置

材料科学与工程学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博研究生听说</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博研究生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10005004</td>
<td>数学物理方程与特殊函数</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位课</td>
<td>03036007</td>
<td>固体微观理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036001</td>
<td>材料物理学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03037001</td>
<td>材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005008</td>
<td>电子陶瓷物理</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03025002</td>
<td>铁磁学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005007</td>
<td>信息材料基础</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>20006022</td>
<td>薄膜材料及技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006021</td>
<td>纳米材料及纳米结构</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006023</td>
<td>固体理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036005</td>
<td>磁性功能材料及应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036006</td>
<td>近代电介质理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业选修</td>
<td>13006003~2</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科专业课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
电子科技大学博士研究生培养方案

<table>
<thead>
<tr>
<th>论文开题报告及文献阅读综述</th>
<th>不计学分</th>
</tr>
</thead>
<tbody>
<tr>
<td>博士生综合考试</td>
<td>不计学分</td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. 高观志，黄维. 固体中的电输运. 北京：科学出版社, 1991
2. 冯端，冯步云. 放眼晶态之外—漫谈凝聚态物质之二. 湖南教育出版社, 1994
3. 冯端，等. 金属物理学. 第二卷. 科学出版社, 1990
4. 方俊鑫，殷之文. 电子介物质学. 北京：科学出版社, 1998
5. 冯端，师昌绪，等. 材料科学导论. 北京，化学工业出版社, 2002
6. 冯端，刘治国等. 凝聚态物理新论. 上海，上海科技出版社, 1992

六、必修环节
博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. **教学实践**：主要包括面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、辅导答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
2. **社会实践**：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。
3. **学术活动**：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得 1 学分。
4. **博士生综合考试**：作为必修环节之一，必须考核通过。
 - 博士生一般应于入学一年后参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，不得参加论文答辩，作退学处理。
 - 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 - 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。
5. **论文开题报告及文献阅读综述**：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文
（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过1年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。
3. 中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。
4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
物理电子学学科 博士研究生（直博生）培养方案

（专业代码：080901）

物理电子学学科

物理电子学学科

物理电子学是电子学、近代物理学、光电子学及相关技术的交叉学科，主要在电子工程和信息
科学技术领域内进行基础和应用研究。近年来本学科发展迅速，不断涵盖新的学科领域，促进了电
磁场与微波技术、微电子学与光电子学、电子与系统等二级学科以及信息与通信系统、光学工程
等上的相关学科的拓展，形成了若干新的科学技术增长点。

本学科为全国重点学科，有以中国科学院院士刘盛纲教授为学术带头
人，一批知名教授和许多年青博士组成的高水平的学术梯队，在相对论电子学、微波电子学、微波等离子体、太赫兹电子学等研究方向上处于国内领先水平，并有广泛国际影响。拥有两个国家级重点实验室（分部），是国家“211”和“985”重点建设学科。

一、培养目标

本学科博士学位获得者应掌握本学科坚实宽广的基础理论，对所从事的研究方向及相关领域具
有系统深入的专门知识，掌握相关学科中有关领域的研究、发展趋势，熟练掌握相关的实验技术及
计算机技术，对本学科的某一方面有深入的研究并有独创性的研究成果。至少熟练掌握一门外语。
具有独立从事科学研究、指导和组织课题进行研究工作的能力以及严谨求实的科学态度和工作作风；
具有成为该学科学术带头人的素质。

二、研究方向

1. 太赫兹电子学与技术
2. 毫米波电子学与器件
3. 微波电子学与 CAD 技术
4. 高功率微波技术
5. 等离子体物理学
6. 纳米电子学
7. 计算电磁学及其工程应用
8. 微波能应用
9. 医学电子学

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指
导下学习。
五、课程设置

物理电子学学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学 时</th>
<th>学 分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备 注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位课</td>
<td>10005004</td>
<td>数学物理方程与特殊函数</td>
<td>60</td>
<td>30</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10005001</td>
<td>矩阵理论</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006002</td>
<td>高等电磁场理论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016002</td>
<td>偏微分方程数值解法</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006005</td>
<td>高等数值分析</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>04025001</td>
<td>微波工程</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006019</td>
<td>导波场论</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026002</td>
<td>微波电子学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04056003</td>
<td>相对论电动力学</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027003</td>
<td>强流电子光学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026005</td>
<td>带电粒子的电磁辐射及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>04027001</td>
<td>非线性理论和方法</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04027002</td>
<td>电子回旋脉塞理论与技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026003</td>
<td>纳电子学与微真空电子学</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04057001</td>
<td>等离子体电子学</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04057002</td>
<td>粒子模拟理论与方法</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04056001</td>
<td>等离子体物理学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04025004</td>
<td>现代微波测量技术</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04026006</td>
<td>电磁场有限元方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>04887001</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>专业选修课</td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>必修环节</td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
</tr>
</tbody>
</table>
物理电子学科 博士研究生（直博生）培养方案

<table>
<thead>
<tr>
<th>课程编号</th>
<th>课程名称</th>
<th>学分</th>
<th>学时</th>
</tr>
</thead>
<tbody>
<tr>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
1. Introduction to the physics of gyrotrons, 2004, G.S. Nusinovich.

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评语，学院
 给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成获得 1 学分。
3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考察博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，终止学业。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得
 低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理
 科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相
 应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1、开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2、论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
电路与系统学科 博士研究生（直博生）培养方案

（专业代码：080902）

本学科从1979年开始招收研究生，是首批有权授予硕士学位的学科。1986年获博士学位授予权，是国家重点学科，并设有博士后流动站，是“长江特聘学者”设岗学科。本学科主要研究电路与系统的理论、分析、测试、设计和物理实现。本学科与信息和通信工程、计算机科学与技术、生物医学工程等学科交叠，形成一系列的边缘、交叉学科，如新型微处理器设计、人工神经网络、各种数字信号处理系统设计、人工神经网络理论等。在非线性电路理论、人工神经网络及计算智能、高稳低相噪微波毫米波频率合成技术、微波电路、先进发射机结构、大规模集成电路设计、声表面波电路等方面保持着国内领先态势，取得了一批接近国际先进水平的成果。

本学科现有博士生导师8人，教授11人，副教授（含高工）22人，并配备有现代电路与系统实验室、微波中心、射频微波电路系统实验室等先进的实验室，提供了与本学科培养方向有关的先进实验技术和手段。它是信号与信息处理、通信、控制、计算机乃至电力、电子等诸方面研究和开发的理论与技术基础。

一、培养目标

博士学位获得者应热爱祖国、热爱人民，具有献身伟大祖国的社会主义现代化的建设事业的精神和相关体质。博士学位获得者应掌握电路与系统科学的系统理论知识和基本实验技能，了解本领域的发展动态，具备一定的科学文化素养，不仅要有获取知识的能力，而且要具备灵活应用所学知识分析问题和解决问题的能力，具有从事创新研究的能力。同时，在所从事的研究方向及其相关领域内应掌握系统、深入的专业知识，对本学科的某一方面有深入的研究，并有独创性的成果。具有独立从事科学研究工作的能力，具备成为学术带头人或课题负责人的素质，能独立承担对科学发展或国民经济建设有意义的研究或开发课题，胜任高等院校的教学和科研工作，或担任技术管理和工程设计工作，以及严谨求实的科学态度和工作作风。掌握一到二门外语，能熟练阅读专业书籍、文献并撰写论文，并能灵活应用于书面写作及口头交流。

二、研究方向

1. 非线性电路与系统
2. 射频、微波、毫米波电路与系统
3. 数字、模拟集成电路及验证技术
4. 数字射频混合集成电路
5. 微波集成电路
6. 集成电路中的信号完整性设计
7. RF MEMS
8. 绿色能源技术
9. 计算智能

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。
四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分。必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10005001</td>
<td>矩阵理论</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10005004</td>
<td>数学物理方程与特殊函数</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005001</td>
<td>随机过程与应用</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006003</td>
<td>最优化理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02046001</td>
<td>自适应信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02056002</td>
<td>现代网络理论与综合</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057002</td>
<td>射频集成电路</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057005</td>
<td>VLSI 电路和系统设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057003</td>
<td>现代电路理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02045001</td>
<td>信号理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02056005</td>
<td>现代频率综合技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006016</td>
<td>现代通信系统中的微波电路</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057006</td>
<td>RF MEMS 及系统集成</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057012</td>
<td>现代通信中的发射机技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057008</td>
<td>软硬件协同设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057009</td>
<td>人工神经网络与计算智能</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02035003</td>
<td>近代微波测量</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016005</td>
<td>模数混合集成电路设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02036001</td>
<td>近代微波网络理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
电子科技大学博士研究生培养方案

<table>
<thead>
<tr>
<th>课程编号</th>
<th>课程名称</th>
<th>学分</th>
<th>修读学期</th>
<th>公共选修</th>
</tr>
</thead>
<tbody>
<tr>
<td>16005005</td>
<td>自然辩证法</td>
<td>18</td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3 1 2</td>
<td></td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>实验课程</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>选修课程</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>00006003</td>
<td>学术活动（十次）</td>
<td></td>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

直博生自学必修领域经典专著清单

博士生自学必修领域经典专著清单不做具体限定，由导师自行选定和指导，自学完成后提交导师签字的读书笔记。

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容:

1. **教学实践、社会实践为二选一，完成后获得1个学分。**

 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不少于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。

 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. **学术活动**：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案。全部完成后获得1学分。

3. **博士生综合考试**：作为必修环节之一，必须考核通过。

 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，在下一年参加一次补考，补考仍未通过者，终止学业。

 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 （2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。
 （3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
 （4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业。
 （5）若因正当原因改变选题，须按上述要求重做开题报告。
 （6）论文开题通过 1 年后方能申请学位论文中期考评。
2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。
3. 中期考评
 （1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，交论文评审委员会评审，评审委员会对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
 （2）若中期考评没能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。
 （3）学位论文中期考评通过 1 年后方能申请学位论文答辩。
4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
微电子学与固体电子学学科 博士研究生（直博生）培养方案

（专业代码：080903）

微电子学与固体电子学是电子科学与技术与信息科学技术的先导和基础，是我国二十一世纪重点发展的学科之一。该学科主要研究半导体物理与器件，电子材料与固体电子元器件，超大规模集成电路的设计与制造技术，系统芯片技术，电路组件与系统，微机电系统等。它涉及到电路与系统、通信与信息系统、信号与信息处理、电子工程学、物理电子学、电磁场与微波技术、电子材料科学与工程、自动控制学以及计算机科学与技术等多个学科。这一学科的发展非常迅速，目前已进入了以超大规模集成电路为主要标志的发展阶段。其主要发展方向是超深亚微米物理与技术，集成电路与系统技术，新型固体电子器件，纳米电子器件以及微机电系统。

我校本学科是国家重点学科，有一支以科学院院士陈星弼教授为学科带头人，以长江学者特聘教授、博士生导师、教授、副教授以及一批青年博士、硕士组成的学术队伍，在新型半导体功率器件与智能功率集成电路等方面研究独具特色，一些工作在国内外享有盛誉。并与国内外相关的学校和研究所有着广泛的合作关系。

一、培养目标

本学科博士学位获得者应具有微电子学与固体电子学方面坚实宽广的基础理论和系统深入的专业知识，能熟练运用计算机和仪器设备进行实验研究，具有较强的独立分析问题和解决问题的能力。不仅对本学科的某一方面有深入的了解，而且在该方面有一定的研究成果。应掌握一门外语。具有严谨求实、敬业创新和团结合作的品德，具有作为项目主持者乃至学术领头人的素质，能胜任本专业科研、教学或产业的技术管理职责。

二、研究方向

1. 新型半导体材料与功率器件
2. 功率集成电路与系统
3. 大规模集成电路与系统
4. 专用集成电路与系统
5. SOC/SIP系统芯片技术
6. 微电子学理论与技术
7. 电子薄膜与集成器件

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。
研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td>学位基础课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博研究生听说</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博研究生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017004</td>
<td>纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036007</td>
<td>固体微观理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017005</td>
<td>模拟集成电路分析与设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02057005</td>
<td>VLSI 电路和系统设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>定向课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td>跨学科选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006007</td>
<td>公共选修课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006008</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

电子科技大学博士研究生培养方案
博士研究生自学本领域经典专著清单：

六、必修环节
博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践活动。必修环节四选一，完成后获得1个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分课程、指导毕业设计等，由导师给出评语，报所在学院备案，完成者获得1个学分。
 - 社会实践活动：主要指博士生运用所学知识到科研院所、企事业单位进行社会调查，或参与一些工程项目，并写出总结报告，由实习或调查单位提供书面证明，报所在学院备案，完成者获得1个学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1个学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生对本学科前沿的掌握程度。博士生应于入学两年内参加综合考试。综合考试未通过者，允许在下一年内参加一次补考，补考仍未通过者，终止学业。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作的能力。学位论文应复杂科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
 （2）开题报告的方式。开题报告应以报告会的形式，由学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，博士生的指导老师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
 （3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
 （4）若开题报告没能通过，在导师的指导下3个月内才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
 （5）若因正当原因改变选题，须按上述要求重做开题报告。
 （6）论文工作
 博士生在导师指导下按照计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周向导师汇报研究进展。

2. 论文工作
 博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评
 （1）学位论文开题一年后，博士生向学院组织的考评审小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评审小组至少由本学科及相近学科的3位专家组成，博士生的指导老师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考评审小组对博士生论文工作进行认真审查，并将考评审意见填入《中期考评表》，交各学院研究生科保存，以备检查。
 （2）若中期考评没能通过者，在导师的指导下6个月内才能申请重新进行中期考评。2次考评审不过者，应终止博士生学业。
 （3）学位论文中期考评审通过1年后方能申请学位论文答辩。

4. 发表学术论文
 博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
 博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
电磁场与微波技术学科 博士研究生（直博生）培养方案

（专业代码：080904）

我校“电磁场与微波技术”学科是首批国家重点学科，也是“211工程”重点建设学科。其研究范畴主要包括：电磁场理论与计算电磁学；天线与电磁散射；微波与毫米波理论与技术等。主要交叉学科有：无线电物理、信息与通信工程；光学工程；计算机科学与技术；材料科学与工程；生物医学工程等。本学科的优势主要包括：微波理论、微波毫米波电路与系统、天线理论与技术、计算电磁学、电磁散射与逆散射、微波测量理论与技术、非均匀介质中的场与波、微波集成电路、微波遥感理论及应用、电磁兼容、太赫兹固态技术、电波传播等。

我校“电磁场与微波技术”学科于1981年首批获得博士学位授予权，1988年首批设博士后流动站，学术队伍整体水平高，结构合理，现有博士生导师22名，教授20名。现有实验条件包括：高频复杂系统国防重点学科实验室、计算电磁学实验室、大型微波暗室等。为研究生培养提供了先进测试平台和试验环境。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，对本学科研究前沿和发展趋势有系统深入的了解，在电磁场与微波技术、电路理论及相关学科方面有坚实宽广的理论基础，具有独立完成本学科相关实验研究的能力，能应用至少一门外语撰写高水平学术论文，并能在国际会议上进行交流。有严谨求实的科学态度和工作方法，能独立从事科学研究，对本学科某方面具有深入研究并取得独创性成果，能独立承担相关的研究和开发课题，具备成为学术带头人或项目负责人的素质。

二、研究方向

1. 微波理论
2. 天线理论与技术
3. 电磁散射与逆散射
4. 计算电磁学
5. 微波毫米波电路与系统
6. 非均匀介质中的场与波
7. 微波测量理论与技术
8. 微波遥感理论及应用
9. 太赫兹固态技术
10. 电波传播

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少选一门基础课；三门以上专业基础课。专业基础课中有“**”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。
研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习外文原著一本。

五、课程设置

电磁场与微波技术学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位</td>
<td>公共基础课</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006003</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1005004</td>
<td>数学物理方程与特殊函数</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1005001</td>
<td>矩阵理论</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005003</td>
<td>最优化理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0404004</td>
<td>现代光学</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1005001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04066001</td>
<td>高等量子力学</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005002</td>
<td>高等电磁场理论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005005</td>
<td>计算电磁学</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0205001</td>
<td>非线性微波电路与系统</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0205002</td>
<td>近代天线理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0205003</td>
<td>无线性微波网与坐标设计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005001</td>
<td>导波场理论</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02036001</td>
<td>近代微波网络理论与应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037001</td>
<td>非均匀介质中的场与波</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037002</td>
<td>电磁场散射分析的高频近似方法</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02035003</td>
<td>近代微波测量</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037003</td>
<td>电磁理论中的矢正格林函数</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02037004</td>
<td>瞬变电磁场</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0205002</td>
<td>电磁兼容原理与应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005020</td>
<td>毫米波理论与技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005007</td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. **教学实践、社会实践为二选一**，完成后获得1个学分。
 - **教学实践**：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 - **社会实践**：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. **学术活动**：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院备案，全部完成者获得1学分。

3. **博士生综合考试**：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - 博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。

4. **论文开题报告及文献阅读综述**：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1、开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期末之前。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2、论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成（尽量为参加过开题报告的专家）。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
电子信息材料与元器件学科 博士研究生（直博生）培养方案

（专业代码：0809Z1）

现代信息及电子系统的发展离不开电子信息材料与元器件，电子信息材料的设计、验证和新的合成工艺又必须与器件相结合，二者相辅相成，缺一不可。从未来的发展看，我国已成为世界电子信息材料和元器件的生产基地，电子陶瓷材料、磁性材料与器件、电阻、电容、电感、变压器、电子电源、微特电机等各种电子器件均已成为世界产量第一大国，复合型的基础电子技术学科方向和人才培养是必然之路。设立电子信息材料与元器件学科是培养高水平电子人才的必要手段。可以说，我国的电子材料与元器件影响着世界电子市场，并且不断开拓新的技术领域和研究方向。随着信息技术不断开发，特别是电子信息与器件和新 LTCC 技术、硅基元器件及纳米电子技术方面的系统专门知识高级人才的需求是非常迫切的。本学科属于国家一级授权学科“电子科学与技术”的二级分学科，具有较强的导师队伍和学术梯队，依托国家、省部级和国防重点实验室的先进制造设备、测试设备和设计软硬环境，充足的科研经费和高水平的学术氛围，为培养电子材料与元器件的高水平人才打下了坚实的基础。

一、培养目标

该学科、专业培养目标：博士学位获得者应具有电子信息材料及元器件，特别是 Si 基上的电子信息材料与元器件，固态 SOC 的计算机设计、模拟和仿真知识。既侧重于电子材料、磁性材料、半导体材料和光电材料中原创性开发和产业化应用研究，又重视博士生掌握硅基电子器件、新型电子器件、LTCC 器件及纳米材料的最新研究领域和工艺流程，还培养博士生拥有用计算机对器件及组合系统的设计与优化技术，熟悉并掌握各种新型器件的制造过程分析测试过程，具有较强的独立从事科研工作的能力和分析解决工程问题的能力，掌握 1—2 门外语，对本学科的某一方面不仅有较深入了解，而且有一定研究成果，学风正派，工作严谨求实，善于与人团结共事，能胜任本专业科研、教学或产业部门的技术工作及管理工作。

博士学位获得者应政治合格，热爱祖国，热爱人民，献身于伟大祖国的社会主义建设事业。

二、研究方向

1. 信息材料与元器件
2. 纳米电子学及自旋电子学
3. LTCC 材料及片式元器件设计技术
4. 新型微波器件
5. 电子薄膜与集成器件
6. 隐身材料与技术

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课
中有“**”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选修。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博研究生听说</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博研究生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017004</td>
<td>纳米电子学与自旋电子学</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036007</td>
<td>固体微观理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017001</td>
<td>半导体器件物理</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005007</td>
<td>信息材料基础</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03037001</td>
<td>材料分析理论与方法</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03017002</td>
<td>微细加工与 MEMS 技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005002</td>
<td>*数字信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03036006</td>
<td>近代电介质理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005006</td>
<td>材料表面与界面物理</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03027002</td>
<td>材料设计与计算</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03025002</td>
<td>铁磁学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006022</td>
<td>薄膜材料及技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试/考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td></td>
<td>公共选修</td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>跨学科专业课程</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>必修环节</td>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
博士生自学本领域经典专著清单：

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评
 语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在
 学院备案。完成者获得 1 学分。
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得 1 学分。
3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，终止学业。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理
 科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应
 的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位
论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研
究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。
（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1．开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的三位专家组成，导师可以作为其中一位专家，另两位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过1年后方能申请学位论文中期考评。
2．论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。
3．中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的三位专家组成，导师可以作为其中一位专家，另两位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并参加过开题报告的专家组成的考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。
4．发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5．学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所作的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。
博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评审、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
信息与通信工程学科 博士研究生（直博生）培养方案
（专业代码：081000）

电子科技大学“信息与通信工程”一级学科是国家重点学科，包含3个二级学科，即属于国家重点学科与长江学者计划特聘教授设岗的两个二级学科“通信与信息系统”和“信号与信息处理”，根据我校特色与优势、反映学科前沿方向而设置的二级学科“信息获取与探测技术”。我校“信息与通信工程”相关学科是国内首批获博士学位授予权、首批设立博士后流动站的学科，也是首批“211工程”和“985工程”重点建设学科，2002年两个二级学科均被评为国家重点学科，2007年被评为一级学科国家重点学科。本一级学科点现有工程院院士1名、千人计划入选者6名（其中青年千人3名）、长江学者2名、国家教学名师1名、教育部科技委委员2名、国务院学科评议组成员1名，教育部新世纪优秀人才18名，已形成在国内外具有较大影响的高水平学术研究团队。学科点设有国家级重点实验室、教育部重点实验室，拥有一大批国际水平的实验仪器设备。

本学科与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科的研究领域密切相关。

一、培养目标

本学科博士学位获得者应在通信与信息学科内，建立宽广坚实的理论基础，把握完整正确的学术趋势，具备系统深入的专业知识，掌握独立精湛的研究技能，达到熟练的国际学术交流水平，在所从事的具体研究方向上提供创新并创优的科学技术成果。

本学科博士学位获得者应具有严谨求实的学风、高尚的人文素养、合格的职业道德与公民职责，热爱祖国和人民，身心健康，献身科学研究和社会进步事业，努力成为某个领域的学术或技术或管理精英。

二、研究方向

1. 现代通信信号处理 2. 通信网络与宽带通信技术
3. 通信网络中的信息安全技术 4. 通信RFIC及SOC技术
5. 资源探测中的信息技术 6. 毫米波通信技术
7. 数字图像音视频处理 8. 定量遥感
9. 遥感图像处理与识别 10. 空间数据挖掘

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课
中学有“*”的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>10005001</td>
<td>矩阵理论</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>10006003</td>
<td>图论及应用</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>随机过程及应用</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>20006003</td>
<td>最优化学理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>06016019</td>
<td>统计学习理论与应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>10027005</td>
<td>不确定性的数学理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>02025010</td>
<td>数字通信</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>20006001</td>
<td>信号检测与估计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>01016018</td>
<td>高级计算机网络(1)--原理与体系结构</td>
<td>40</td>
<td>2</td>
<td>1.2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>01017003</td>
<td>分组交换网的性能分析与优化</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>06016006</td>
<td>信息论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>26016002</td>
<td>现代无线与移动通信系统</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>26016003</td>
<td>纠错编码与调制</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>26016008</td>
<td>随机过程及在无线通信中的应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>26017001</td>
<td>通信工程的数学建模与性能评估</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>01025001</td>
<td>信号分析</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01025007</td>
<td>多源信息融合理论及应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016004</td>
<td>无线传感器网络</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016009</td>
<td>ASIC 设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016011</td>
<td>无线互联网</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016012</td>
<td>Core concepts and key methodologies for modern networking I</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>课程代码</td>
<td>课程名称</td>
<td>学分</td>
<td>学期</td>
<td>必修/选修</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016013</td>
<td>网络交换设备架构及设计实践</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016014</td>
<td>DSP 技术与算法实现</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016016</td>
<td>MIMO-OFDM 基带接收机设计与实现</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01016017</td>
<td>互联网安全</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01017002</td>
<td>光纤通信</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01017004</td>
<td>通信信号处理</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01017006</td>
<td>Core concepts and key methodologies for modern networking II</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02017001</td>
<td>微波成像理论与实现</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02047004</td>
<td>谱估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20006024</td>
<td>随机过程与排队论</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18887001</td>
<td>微波遥感与合成孔径雷达应用</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26016001</td>
<td>宽带无线通信技术</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26016005</td>
<td>DSP算法实现技术与架构研究</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26016009</td>
<td>先进计算机网络技术</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006001</td>
<td>教学实践</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006002</td>
<td>社会实践</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单：
3. Theodore S. Rappaport. Wireless Communications principles and practice, 蔡涛等译，《无线通信原理与应用》，电子工业出版社
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 - 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分课程、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 - 社会实践：主要是指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后再获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域的掌握程度。
 - 博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年内参加一次补考，补考仍未通过者，终止学业。
 - 博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - 综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于 50%。
 - 各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷及口试记录及评语由所在学院研究生秘书收后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1、开题报告
（1）开题报告的时间。博士生在确定选题、大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行。报告会至少须有本学科及相近学科的3位专家组成，其中1位专家是教授或具有博士学位的副教授（尽量为博士生导师）。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业。
（5）若因正当原因改变选题，须按上述要求重新做开题报告。
（6）论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的写作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告。考评小组至少由本学科及相近学科的3位专家组成，其中1位专家是教授或具有博士学位的副教授（尽量为博士生导师）。
（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次开题报告不过者，应终止博士生学业。
（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按期完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
通信与信息系统学科 博士研究生（直博生）培养方案

（专业代码：081001）

“通信与信息系统”隶属于“信息与通信工程”一级学科，本学科点是国家重点学科、长江学者计划特聘教授设岗学科，1986年本学科点即被批准为博士点，也是首批“211 工程”重点建设学科。该学科拥有一支由中国工程院院士、千人计划入选者、国家教学名师等高级别人才组成的方向齐全、结构合理的学术队伍，拥有由国家级重点实验室、多个省部级重点实验室和一批“985工程”和“211工程”重点建设实验室等构成的科研与人才培养平台，在电子信息领域具有学科交叉和相互支撑的综合优势，在多个相关领域具有国内领先的技术水平，是我国通信与信息系统研究的重要基地之一。

本学科与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科研究领域密切相关。

一、培养目标

本学科博士学位获得者应在通信与信息学科内，建立宽广坚实的理论基础，把握完整正确的学术趋势，具备系统深入的专业知识，掌握独立精湛的研究技能，达到熟练的国际学术交流水平，在所从事的具体研究方向上提供创新并创优的科学技术成果。

本学科博士学位获得者应具有严谨求实的学风、高尚的人文素养、合格的职业道德与公民职责，热爱祖国和人民，身心健康，献身科学研究和社会进步事业，努力成为某个领域的学术或技术或管理精英。

二、研究方向

1. 通信网络技术
2. 光纤通信与器件
3. 无线与移动通信
4. 多媒体通信
5. 卫星通信技术
6. 通信抗干扰技术
7. 资源探测中的信息技术
8. 通信专用集成电路与数模混合 SOC 设计
9. 图像传输与处理
10. 现代通信中的信号处理
11. 通信 RFIC 及 SOC 技术
12. 毫米波通信技术

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相同学科门类之间，工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。
研究生应于导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

通信与信息系统学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10005001</td>
<td>矩阵理论</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006002</td>
<td>数值分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10006003</td>
<td>图论及应用</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005001</td>
<td>随机过程及应用</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006003</td>
<td>最优化理论及应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016019</td>
<td>统计学习及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10027005</td>
<td>不确定性的数学理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位课程</td>
<td>01025010</td>
<td>数字通信</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006001</td>
<td>信号检测与估计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016018</td>
<td>高级计算机网络(1)--原理与体系结构</td>
<td>40</td>
<td>2</td>
<td>1/2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01017003</td>
<td>分组交换网的性能分析与优化</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067006</td>
<td>信息论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26016002</td>
<td>现代无线与移动通信系统</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26016003</td>
<td>纠错编码与调制</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26016008</td>
<td>随机过程及在无线通信中的应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26017001</td>
<td>通信工程的数学建模与性能评估</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>01025001</td>
<td>信号分析</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01025007</td>
<td>多源信息融合理论及应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016004</td>
<td>无线传感器网络</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016009</td>
<td>ASIC 设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016011</td>
<td>无线互联网</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016012</td>
<td>core concepts and key methodologies for modern networking</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016013</td>
<td>网络交换设备架构及设计实践</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016014</td>
<td>DSP 技术与算法实现</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
</tbody>
</table>

- 208 -
博士研究生（直博生）培养方案

<table>
<thead>
<tr>
<th>课程编号</th>
<th>课程名称</th>
<th>学分</th>
<th>学时</th>
<th>考核方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>01016016</td>
<td>MIMO-OFDM 基带接收机设计与实现</td>
<td>40</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>01016017</td>
<td>互联网安全</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>01017002</td>
<td>光纤通信</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>01017004</td>
<td>通信信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>01017006</td>
<td>Core concepts and key methodologies for modern networking II</td>
<td>20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>02047004</td>
<td>谱估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>20006024</td>
<td>随机过程与排队论</td>
<td>40</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>26016001</td>
<td>宽带无线通信技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>26016005</td>
<td>DSP 算法实现技术与架构研究</td>
<td>40</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>26016009</td>
<td>先进计算机网络技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

学科前沿专题讲座
20 1

其他选修课
- 第二外国语（日语、德语、法语）
 - 课程编号: 13006003-13006005
 - 学分: 80
 - 学时: 3
 - 考核方式: 1, 2

公共选修
- 马克思主义经典著作选读
 - 课程编号: 1600600
 - 学分: 18
 - 学时: 1

跨学科相关课程
- 博士生学术英语交流
 - 课程编号: 13006009
 - 学分: 30
 - 学时: 1

自学课程
- 自学英语
 - 课程编号: 00006006
 - 学分: 2

必修环节
- 教学实践
 - 课程编号: 00006001
 - 学分: 二选一
- 社会实践
 - 课程编号: 00006002
 - 学分: 二选一
- 学术活动（不少于十次）
 - 课程编号: 00006003
 - 学分: 二选一
- 论文开题报告及文献阅读综述
 - 课程编号: 00006004
 - 学分: 不计学分
- 博士生综合考试
 - 课程编号: 00006005
 - 学分: 不计学分

博士生自学本领域经典专著清单:
1. Georgios B. Giannakis, Yingbo Hua, Petre Stoica, Lang Tong. 《Multiple Processing Advances in Wireless and Mobile Communications》, Pearson, 2002
2. Ruiyun Lin, Shaowu Zong. 《无线通信与移动通信中心信号处理研究的新进展》, 电子工业出版社, 2004
4. Theodore S. Rappaport. 《Wireless Communications principles and practice》, 蔡涛等译, 电子工业出版社
六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：

1. 教学实践、社会实践为二选一，完成后获得 1 个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 负责答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评
 语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在
 学院备案。完成者获得 1 学分。

2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活
 动，在校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得 1 学分。

3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，终止学业。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委
 员会主任必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于 50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评分等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管
 理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的
 开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位
论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究
工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告
 （1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期
 期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)，并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，应及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成(尽量为参加过开题报告的专家)。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中期考评通过1年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
信号与信息处理学科 博士研究生（直博生）培养方案

（专业代码：081002）

信号与信息处理学科是信息与通信工程一级学科下属的二级学科，是全国重点学科，具有博士硕士学位授予权。信号与信息处理学科以研究信号与信息的处理为主体，包含信息获取、变换、存储、传输、交换、应用等环节中的信号与信息的处理，研究范畴包括雷达系统、阵列信号处理、图像处理与非合作信号处理等。信号与信息处理学科与电子科学与技术、计算机科学与技术、控制科学与工程、仪器科学与技术等学科的研究领域密切相关。

信号与信息处理学科现有博士生导师 19 名、教授 19 名，有一支稳定的学术科研队伍，在高层次人才培养及学科领域内多方面的科学研究工作中取得了丰硕成果。本学科总体上处于该领域国内领先水平，部分研究方向接近国际先进水平。信号与信息处理学科拥有较先进的设备与实验条件，在“211”、“985”工程的支持下，信号与信息处理学科教学、科研条件不断改善，目前已拥有先进设备与实验条件。

一、培养目标

本学科博士学位获得者应热爱祖国和人民，献身于伟大祖国的社会主义建设事业。具有信息科学方面宽广坚实的理论基础，系统深入的专业知识和深厚的数理基础，并掌握电子科学、计算机科学、自动控制科学等相关的基础知识，深入了解和掌握本学科内外现状、前沿和发展趋势，具有独立从事本学科领域中的基础理论课题及前沿课题的研究、开发能力，并提供创新的科学研究成果。至少熟练掌握一门外语，具有“读、写、听、说”能力。

学位获得者应有严谨求实的学风，高尚的职业道德，能独立承担和完成各类研究课题，并应具有学术带头人或项目负责人的素质，能胜任科研、教学和技术管理工作。

二、研究方向

1. 雷达系统
2. 雷达信号与信息处理
3. 雷达成像
4. 雷达目标识别
5. 自适应及阵列信号处理
6. 非合作信号处理
7. 现代通信信号处理技术

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学业者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于 32 学分。学位课程要求不低于 16 学分，700 级的课程不低于 8 学分，必修环节不低于 2 学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“*”标志的为全校共选专业基础课。允许在相关学科门类之间、工科与理科之间跨学科选修 1～2 门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。
研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程 2 学分，应在导师指导下学习。

五、课程设置

<table>
<thead>
<tr>
<th>类别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博生英语听说与写作</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>10006001</td>
<td>泛函分析</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论和方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10005001</td>
<td>矩阵理论</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>学位课</td>
<td>20005001</td>
<td>随机过程及应用</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>02017004</td>
<td>现代信号处理方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10016006</td>
<td>特殊矩阵</td>
<td>50</td>
<td>2.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02045001</td>
<td>信号理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006001</td>
<td>信号检测与估计</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02046001</td>
<td>自适应信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20007001</td>
<td>模式识别</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006015</td>
<td>图像处理及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02046006</td>
<td>数字信号处理理论及算法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>选修课</td>
<td>02047004</td>
<td>信估计与阵列信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017001</td>
<td>微波成像理论与实现</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>01016009</td>
<td>ASIC 设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02045002</td>
<td>软件无线电技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02045003</td>
<td>数字视频技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02045004</td>
<td>GPS 理论与应用</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02066002</td>
<td>雷达与电子对抗系统</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02066004</td>
<td>嵌入式系统</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02066007</td>
<td>计算机视觉</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02066009</td>
<td>无线传感器网络信号处理</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>02017005</td>
<td>压缩感知理论及其应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>其它选修课</td>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>80</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
电子科技大学博士研究生培养方案

<table>
<thead>
<tr>
<th>课程代码</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>必修/选修</th>
</tr>
</thead>
<tbody>
<tr>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td>选修</td>
<td></td>
</tr>
<tr>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单

博士生应阅读导师推荐外文专著一部，并撰写阅读笔记。

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容；

1. **教学实践、社会实践为二选一，完成后获得1个学分。**
 - **教学实践**：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下可讲授部分习题课、辅导答疑、批改作业、指导毕业设计等。工作量不小于40学时，由导师给出评语，学院给予书面证明，报所在学院备案。完成者获得1学分。
 - **社会实践**：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与一些工程项目，并写出书面总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。

2. **学术活动**：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。

3. **博士生综合考试**：作为必修环节之一，必须考核通过。
 - 博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 - （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。
 - （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 - （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。
 - （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献 50 篇以上，其中外文文献 30 篇以上，并写出 5000 字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士生在导师指导下确定选题和开展学位论文工作。
1、开题报告
（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期期末之前，最迟应在第四学期期末之前完成开题报告。
（2）开题报告的方式。开题报告应以报告会的形式，开题报告会至少须有本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。
（4）若开题报告没能通过，在导师的指导下 3 个月后才能申请重新开题。2 次开题报告不过者，应终止博士生学业。
（5）若因正当原因改变选题，须按上述要求重做开题报告。
（6）论文开题通过 1 年后方能申请学位论文中期考评。
2、论文工作
博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每 2 周一次向导师汇报研究进展。
3、中期考评
（1）学位论文开题一年后，博士生向学院组织的考核小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考核小组由本学科及相近学科的 3 位专家组成，导师可以作为其中 1 位专家，另 2 位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成（尽量为参加过开题报告的专家）。考核小组对博士生论文工作进行认真审查，并将考核意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
（2）若中期考评未能通过者，在导师的指导下 6 个月后才能申请重新进行中期考评。2 次考评不过者，应终止博士生学业。
（3）学位论文中期考评通过 1 年后方能申请学位论文答辩。
4、发表学术论文
博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。
5、学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
控制科学与工程学科 博士研究生（直博生）培养方案
（专业代码：081100）

控制科学与工程是研究控制的理论、方法、技术及其工程应用的学科。控制科学以控制论、系统论、信息论为基础，研究各应用领域内的共性问题，即为了实现控制目标，如何建立系统的模型，分析其内部与环境信息，采取何种控制与决策行为；且与各应用领域的密切结合，又形成了控制工程丰富多样的内容。本学科点在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势，在我国国民经济发展和国家安全方面发挥了重大作用。

我校控制科学与工程学科为四川省重点学科，师资力量雄厚，形成了现代信号处理与检测技术、模式识别与机器人、测控通信与导航控制、新能源及控制技术等研究方向，具有电子测试优势明显，军事电子特色鲜明，工程研究能力突出等特点。本学科的发展受益于社会和国家的发展，同时也在国家的决策咨询、国防建设、行业推动、社会服务、人才培养等方面做出了突出的贡献。

一、培养目标

培养学生在自动控制理论、人工智能、模式识别、系统工程、计算机应用、信息与信号处理、系统设计与仿真、检测技术等方面掌握坚实宽广的基础理论和系统深入的专门知识，具有独立从事控制科学理论研究和解决控制工程问题的能力，具有组织科学研究、技术开发与专业教学的能力，熟悉本学科最新研究成果和发展动态，能够熟练运用一门外国语进行学术论文写作和交流，成为控制科学与工程学科的高级专门人才。

二、研究方向

1. 现代信号处理与检测技术 2. 模式识别与机器人
3. 测控通信与导航控制 4. 新能源及控制技术
5. 复杂系统与智能优化 6. 定量遥感与遥感图像处理
7. 微波与通信导航测试 8. 飞行器控制及多源数据融合技术
9. 空间运行与交通管理技术 10. 空间系统仿真、测试、验证与评估技术

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分，学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、三门以上专业基础课。专业基础课中有“**”标志的为全校共选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

控制科学与工程学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开课学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>学位课</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>公共基础课</td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博研究生听说</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博研究生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>基础课</td>
<td>20005001</td>
<td>随机过程及应用</td>
<td>60</td>
<td>3</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006008</td>
<td>应用数学理论与方法</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>专业基础课</td>
<td>07017001</td>
<td>现代信号处理</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07047002</td>
<td>模式识别与机器学习</td>
<td>60</td>
<td>3</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07017003</td>
<td>计算智能理论与方法</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07037001</td>
<td>现代检测技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006003 *</td>
<td>最优化理论与应用</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>07026003</td>
<td>线性系统理论</td>
<td>50</td>
<td>2.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td>非学位选修课</td>
<td>07026005</td>
<td>自适应控制</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07026006</td>
<td>非线性系统理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07047003</td>
<td>计算机视觉</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07025001</td>
<td>电气传动与自动控制</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07026004</td>
<td>系统建模方法</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07026006</td>
<td>非线性系统理论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07027001</td>
<td>复杂系统性能评价和优化</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07027005</td>
<td>智能控制理论及应用</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07887001</td>
<td>学科前沿知识专题讲座</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>其他选修课</td>
<td>13006003~13006005</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1、2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>公共选修</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006001</td>
<td>教学实践</td>
<td></td>
<td></td>
<td></td>
<td>二选一</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006002</td>
<td>社会实践</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00006005</td>
<td>博士生综合考试</td>
<td></td>
<td></td>
<td></td>
<td>不计学分</td>
<td></td>
</tr>
</tbody>
</table>
博士生自学本领域经典专著清单：
 中文翻译版：阿雷尼，韦伯斯特著，张伦译．传感器和信号调节（第2版）．清华大学出版社．2003
4. David Forsyth, Jean Ponce, 林学訚译．《计算机视觉：一种现代方法》．电子工业出版社．200407

六、必修环节
博士研究生必修环节包含四大部分，要求研究生分别完成以下内容：
1. 教学实践、社会实践为二选一，完成后获得1个学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于40学时，由导师给出评语，学院给予书面证明，
 完成者获得1学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在学院备案。完成者获得1学分。
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加10次以上校内外学术报告会，并主讲1次全校性学术报告，填写相关表格，报所在学院研究生科备案，全部完成后获得1学分。
3. 博士生综合考试：作为必修环节之一，必须考核通过。
 博士生综合考试是博士生修完课程后进行的，主要考查博士生有关基础理论和专业知识的综合
 考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。
 （1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次
 补考，补考仍未通过者，终止学业。
 （2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员
 会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。
 （3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不
 得低于50%。
 （4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考
 试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。
4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿
 的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文
（一）博士学位论文的基本要求
博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上做出创造性的成果。

（二）博士学位论文工作
博士学位论文在导师指导下确定选题和开展学位论文工作。

1. 开题报告
(1) 开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第一学期末之前，最迟应在第二学期期末之前完成开题报告。
(2) 开题报告的方式。开题报告应在学院的学术交流论坛公开举行；开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。
(3) 开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，应完成《开题报告表》，交学院研究生科保存，以备检查。
(4) 若开题报告没能通过，博士生应在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
(5) 若因正当原因改变选题，博士生应在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。
(6) 论文开题通过一年后方能申请学位论文中期考评。

2. 论文工作
博士学位论文在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评
(1) 学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展报告（在学院的学术交流论坛公开举行），考评小组应至少由本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师）组成。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。
(2) 若中期考评没能通过，博士生应在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。
(3) 学位论文中期考评通过一年后方能申请学位论文答辩。

4. 发表学术论文
博士生在申请学位论文答辩前，必须在本学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写
博士学位论文应在导师（或导师小组）的指导下，由博士生独立完成，且必须是一篇系统完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。
（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。
软件工程学科 博士研究生（直博生）培养方案

（专业代码：083500）

软件工程学科是信息技术领域中发展最快的学科领域之一，软件产业也成为各国经济发展的支柱产业。软件工程领域总体发展形成了宽范围、多维度、多层次、多交叉的体系结构，知识领域包括软件需求、软件设计、软件构建、软件测试、软件维护、软件配置管理、软件项目管理、软件工具与方法、软件质量、软件安全、软件道德与法律等；也涉及到系统工程、领域工程、数字化技术、嵌入式系统、网络与信息安全，系统管理与支持、市场营销等多学科交叉领域。

一、培养目标

本学科以培养掌握软件工程基本理论，根据软件技术的发展和软件行业的需求，面向软件工程领域的高层次人才。

本学科博士学位获得者应热爱祖国和人民，具有坚实的数学基础知识、系统的学科领域知识和精深的研究方向知识；学术视野开阔，学术思想活跃，创新意识强，了解学科现状、发展方向和前沿；能用英语撰写学术论文，能在国际学术会议上交流研究内容；能独立从事软件领域内的基础理论和学科前沿课题的研究，能做出创新性的被国际认同的研究成果；可承担大型软件或重大软件应用项目的设计和开发；能胜任高等院校的教学工作。

二、研究方向

1. 软件理论与技术
2. 网络工程与应用
3. 嵌入式软件技术与应用
4. 数字信息处理技术

三、学习年限

全日制本科起点直接攻读博士学位者（简称直博生），学习年限一般为五年。提前完成博士学位者，可申请适当缩短学习年限；若因客观原因不能按时完成学业者，可申请适当延长学习年限，但最长学习年限不得超过八年。

四、培养方式与课程学习要求

总学分要求不低于32学分。学位课程要求不低于16学分，700级的课程不低于8学分，必修环节不低于2学分。其中公共基础课必修，至少修一门基础课、一门以上专业基础课。专业基础课中有“*”标志的为全校必选专业基础课。允许在相同学科门类之间、工科与理科之间跨学科选修1～2门学位课作为本学科的学位课。学位课可替代非学位课，但非学位课不能替代学位课。

研究生应在导师指导下制定个人培养计划和选课。非学位课中的自学课程2学分，应在导师指导下学习。
五、课程设置

软件工程学科 博士研究生（直博生）课程设置

<table>
<thead>
<tr>
<th>类 别</th>
<th>课程编号</th>
<th>课程名称</th>
<th>学时</th>
<th>学分</th>
<th>开学期</th>
<th>考核方式</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16006003</td>
<td>中国马克思主义与当代</td>
<td>36</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006007</td>
<td>直博研究生听说</td>
<td>30</td>
<td>1.5</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13006008</td>
<td>直博研究生英语阅读与翻译</td>
<td>30</td>
<td>1.5</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017014</td>
<td>组合设计与组合优化理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016019</td>
<td>统计学习理论及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006024</td>
<td>随机过程与排队论</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20005003</td>
<td>组合数学</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016018</td>
<td>形式化方法</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006027</td>
<td>高级网络计算</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016003</td>
<td>系统设计-从芯片到系统</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016004</td>
<td>有限自动机理论</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006011</td>
<td>嵌入式系统设计</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016007</td>
<td>分布式系统</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016008</td>
<td>高级计算机系统结构</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016009</td>
<td>Linux 操作系统内核技术</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006026</td>
<td>算法设计与分析</td>
<td>40</td>
<td>2</td>
<td>2</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20006015</td>
<td>图像处理及应用</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考试</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017005</td>
<td>神经网络理论与应用</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017006</td>
<td>实时计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017007</td>
<td>并行算法</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017008</td>
<td>虚拟现实技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017009</td>
<td>可信计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06066004</td>
<td>计算复杂性</td>
<td>40</td>
<td>2</td>
<td>1</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06067004</td>
<td>小波分析理论与应用</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>考查</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016010</td>
<td>Linux 环境高级编程</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017001</td>
<td>中间件技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016012</td>
<td>数据库新技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016013</td>
<td>互联网络程序设计</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016014</td>
<td>计算机三维动画技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017003</td>
<td>移动技术</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06016015</td>
<td>计算机高级图形学</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>06017004</td>
<td>无线自组网络技术</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
电子科技大学博士研究生培养方案

<table>
<thead>
<tr>
<th>课程编号</th>
<th>课程名称</th>
<th>学分</th>
<th>学时</th>
<th>导师要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>22416001</td>
<td>软件开发技术</td>
<td>40</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>06017013</td>
<td>云计算</td>
<td>20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>06017012</td>
<td>大数据分析与挖掘</td>
<td>20</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>学科前沿专题讲座</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13006003</td>
<td>第二外国语（日语、德语、法语）</td>
<td>90</td>
<td>3</td>
<td>1,2</td>
</tr>
<tr>
<td>13006005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16006004</td>
<td>马克思主义经典著作选读</td>
<td>18</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>13006009</td>
<td>博士生学术英语交流</td>
<td>30</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>00006006</td>
<td>自学课程</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>跨学科相关课程</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006001</td>
<td>教学实践</td>
<td>二选一</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>00006002</td>
<td>社会实践</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006003</td>
<td>学术活动（不少于十次）</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006004</td>
<td>论文开题报告及文献阅读综述</td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00006005</td>
<td>博士生综合考试</td>
<td>不计学分</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

博士生自学本领域经典专著清单:
1. Tanenbaum.Andrew S 等著，计算机网络(第 4 版)，清华大学出版社(中文版)，2005
2. George Couloris 等著，分布式系统:概念与设计(第 4 版)，机械工业出版社(中文版)，2008
3. Abraham silberschatz 等著，操作系统概念（第 7 版），高等教育出版社（影印版），2007
4. John E. Hopcroft 等著，自动机理论、语言和计算导论(第 3 版)，机械工业出版社（中文版），2008
5. Matt Pharr 等著，Physically Based Rendering，Elsevier Science Ltd，2004

六、必修环节

博士研究生必修环节包含四大部分，要求研究生分别完成以下内容:
1. 教学实践、社会实践为二选一，完成后获得 1 学分。
 教学实践：主要是面向硕士生、本科生的教学辅导工作，如在导师指导下讲授部分习题课、
 辅导答疑、批改作业、指导毕业设计等，工作量不少于 40 学时，由导师给出评
 语，学院给予书面证明，报所在学院备案。完成者获得 1 学分。
 社会实践：主要指博士生运用所学知识到科研院所、企事业单位等进行社会调查，或参与
 一些工程项目，并写出总结报告，同时实习或调查单位提供书面证明，报所在
 学院备案。完成者获得 1 学分。
2. 学术活动：为进一步活跃学术气氛并拓宽研究生知识面，博士生应广泛参加学术活动，在
 校期间须参加 10 次以上校内外学术报告会，并主讲 1 次全校性学术报告，填写相关表格，报所在
 学院研究生科备案，全部完成后获得 1 学分。
3. 博士生综合考试：作为必修环节之一，必须考核通过。

博士生综合考试是博士生修完课程后进行的、主要考查博士生有关基础理论和专业知识的综合考试，同时适当检查博士生对所研究方向及有关领域前沿动态的掌握程度。

（1）博士生一般应于入学两年内参加综合考试。综合考试未通过者，允许在下一年参加一次补考，补考仍未通过者，终止学业。

（2）博士生综合考试由学位评定分委员会指定三名专家组成的考试委员会负责实施。考试委员会主席必须由教授以上职称的专家担任，考试委员会其他成员必须由副教授以上职称的专家担任。

（3）综合考试采用笔试和口试相结合的方式，以百分制评定成绩。其中笔试成绩所占比例不得低于50%。

（4）各学科根据实际情况每年集中举行两次综合考试，时间定在每年的四月和十月。综合考试的试题、试卷、口试记录及评语等由所在学院研究生秘书收齐后，与成绩一并报研究生院教学管理科备案保存。

4. 论文开题报告及文献阅读综述：指博士研究生在学位论文开题之前，必须阅读本学科前沿的国内外文献50篇以上，其中外文文献30篇以上，并写出5000字左右的文献综述报告，完成相应的开题报告。

七、学位论文

（一）博士学位论文的基本要求

博士学位论文的选题应属学科前沿或对科技和社会发展具有重要的理论意义或实用价值。学位论文应表明作者在本学科掌握了坚实宽广的基础理论和系统深入的专门知识，具有独立从事科学研究工作或担负专门技术工作的能力，在科学或专门技术上作出创造性的成果。

（二）博士学位论文工作

博士生在导师指导下确定选题和开展学位论文工作。

1. 开题报告

（1）开题报告的时间。博士生在确定选题，大量阅读文献的基础上，一般应在入学的第三学期末之前，最迟应在第四学期末之前完成开题报告。

（2）开题报告的方式。开题报告应以报告会的形式，在学院的学术交流论坛公开举行：开题报告会至少须有本学科及相近学科的3位专家组成，导师可以作为其中1位专家，另2位专家可以是教授或具有博士学位的副教授（尽量为博士生导师），并作出考评意见。

（3）开题报告的内容。依据《开题报告表》的要求，作开题报告。在开题报告会后，及时完成《开题报告表》，交学院研究生科保存，以备检查。

（4）若开题报告没能通过，在导师的指导下3个月后才能申请重新开题。2次开题报告不过者，应终止博士生学业（退学处理）。

（5）若因正当原因改变选题，须按上述要求重做开题报告。

（6）论文开题通过1年后方能申请学位论文中期考评。

2. 论文工作

博士生在导师指导下按计划进行学位论文工作。论文的工作时间一般不应少于两年，论文工作期间应每2周一次向导师汇报研究进展。

3. 中期考评

（1）学位论文开题一年后，博士生向学院组织的考评小组作论文工作进展情况报告（在学院的学术交流论坛公开举行），考评小组至少由本学科及相近学科的3位专家组成，导师可以作为其
中1位专家，另2位专家可以是教授或具有博士学位的副教授(尽量为博士生导师)组成(尽量为参加过开题报告的专家)。考评小组对博士生论文工作进行认真审查，并将考评意见填入《中期考评表》，对未按论文工作计划完成阶段工作的博士生要有明确的处理意见。《中期考评表》交各学院研究生科保存，以备检查。

（2）若中期考评没能通过者，在导师的指导下6个月后才能申请重新进行中期考评。2次考评不过者，应终止博士生学业。

（3）学位论文中请考评通过1年后方能申请学位论文答辩。

4. 发表学术论文

博士生在申请学位论文答辩前，必须在自己所属学科领域的主流杂志上，以本人为第一作者，发表或被录用一定数量的学术论文（详见我校《博士研究生发表论文的要求》）。

5. 学位论文的撰写

博士学位论文应在导师（或导师小组）的指导下，由博士研究生独立完成，且必须是一篇系统的、完整的学术论文。多人合作的课题应明确区分本人所做的工作，共同部分应加以说明。学位论文应按照《研究生学位论文撰写格式规范》的要求撰写，导师应对博士生的学位论文严格审查，把好质量关。

博士研究生到校外单位及委培研究生回原单位做学位论文，要经导师、学院批准，并保证每月至少一次向导师汇报工作进展，按时完成上述工作。

（三）学位论文的答辩申请、评阅、答辩与学位授予按《电子科技大学研究生学位授予实施细则》的规定执行。